Reviews

$P-\rho-T$ Data of Liquids: Summarization and Evaluation. 4. Higher 1-Alkanols (C₁₁, C₁₂, C₁₄, C₁₆), Secondary, Tertiary, and Branched Alkanols, Cycloalkanols, Alkanediols, Alkanetriols, Ether Alkanols, and Aromatic Hydroxy Derivatives

Ivan Cibulka,*,† Lubomír Hnědkovský,† and Toshiharu Takagi‡

Department of Physical Chemistry, Institute of Chemical Technology, 166 28 Prague, Czech Republic, and Kyoto Institute of Technology, Kyoto 606, Japan

The published experimental data for four higher 1-alkanols (C_{11} , C_{12} , C_{14} , C_{16}), secondary, tertiary, and branched alkanols (21 substances), two cycloalkanols, eight polyols, four ether alkanols, and two aromatic hydroxy derivatives (total 41 substances) are summarized and reviewed, and the parameters of the Tait equation are given for 40 substances. This equation allows the calculation of smoothed values of either the volume ratio, $V(P)/V(P_{ref})$, and related properties (relative density, $\rho(P)/\rho(P_{ref})$, compression, $\{1 - V(P)/V(P_{ref})\}$), or, using density data at atmospheric pressure ($P_{ref} = 0.1$ MPa) or at saturation ($P_{ref} = P_{sat}$), the liquid density of the substances over a temperature and pressure range. A comparison of isothermal compressibilities calculated from the Tait equation with available data from the literature is also presented.

Introduction

The work is a continuation of a summarization and critical evaluation of published $P-\rho-T$ data of organic substances in a liquid state. The data for two groups of C, H, O substances, 1-alkanols (C₁ to C₁₀, [94-cib/zik]) and other C, H, O compounds except for hydroxy derivatives [97-cib/hne], have been reviewed and evaluated. In this work the published experimental values of relative density, $\rho(T,P)/\rho(T,P=0.1 \text{ MPa or } P_{\text{sat}})$, and related quantities of hydroxy-C, H, O compounds other than (C₁ to C₁₀) 1-alkanols compiled from the literature are evaluated. The results can be used to calculate the density of a compressed liquid using the reference density $\rho(T,P=0.1 \text{ MPa or } P_{\text{sat}})$ selected from the literature or measured for a particular sample.

Sources of Data

The original experimental data (3208 data points) processed were extracted from the database which was employed for our previous reviews and is being currently updated. A list of substances is presented in Table 1 along with Chemical Abstracts Service Registry Numbers (CASRN, supplied by the authors) and summary formulas.

The characteristics of data that were available in the database for density and related quantities (molar and specific volumes, volume or density ratios, compression) of selected compounds are summarized in Table 2. The temperature ranges and numbers of experimental values are restricted up to the critical temperature; i.e., only subcritical liquid density data were taken from the source database. Similarly, as in our previous review [97-cib/hne], also values (denoted by a letter F in the "data type" column of Table 2) calculated from smoothing functions presented in the papers (mostly the Tait equation), following as much

as possible the information concerning the distribution of experimental points given by the authors, were included for some substances if no direct experimental (D) or smoothed values (S) were available in the papers. The $P-\rho-T$ values calculated from other properties (C) were also included in the evaluation. A combination F, C given in the "data type" column of Table 2 in a few cases denotes that the $P-\rho-T$ values were evaluated from equations used by authors to smooth the density values calculated from other properties.

Treatment of Data and Method of Data Evaluation

The procedures of treatment of data and the critical evaluation were essentially the same as those employed for 1-alkanols, and the details may be found in our previous paper [94-cib/zik]. A brief summarization only is given below.

Available data on the compressed-liquid density and related quantities were fitted by a Tait equation with temperature dependent parameters C(T) and B(T) written in the form

$$\rho(T, P, \vec{c}, \vec{b}) = \frac{\rho(T, P_{\text{ref}}(T))}{1 - C(T, \vec{c}) \ln\left[\frac{B(T, \vec{b}) + P}{B(T, \vec{b}) + P_{\text{ref}}(T)}\right]}$$
(1)

where

$$C(T, \vec{c}) = \sum_{i=0}^{N_{\rm C}} c_i [(T - T_0)/100]^i \qquad \vec{c} = \{c_i\} = \{c_0, ..., c_{N_{\rm C}}\}$$
(2)

$$B(T,\vec{b}) = \sum_{i=0}^{N_{\rm B}} b_i [(T-T_0)/100]^i \qquad \vec{b} = \{b_i\} = \{b_0, ..., b_{N_{\rm B}}\}$$
(3)

^{*} Fax: +420-2-2431-0273. E-mail: ivan.cibulka@vscht.cz.

[†] Institute of Chemical Technology.

[‡] Kyoto Institute of Technology.

Table 1.	List of Sub	stances:	Names	(Alternative	Names),	Chemical	Abstracts	Service	Registry	Numbers (Supplied by	,
the Auth	ors), CASRI	N, and Su	ummary	Formulas								

name (alternative name)	CASRN	formula
1-Alkano	ls	
1-undecanol	112-42-5	C11H24O
1-dodecanol	112-53-8	$C_{12}H_{26}O$
1-tetradecanol	112-72-1	$C_{14}H_{30}O$
1-hexadecanol	36653-82-4	C16H34O
Other Alka	nols	
2-propagol (isopropyl alcohol)	67-63-0	CaHaO
2-butanol (sec-buty) alcohol)	78-92-2	C4H100
2-methyl-1-propagol (isobutyl alcohol)	78-83-1	$C_4H_{10}O$
2-methyl-2-propanol (<i>tert</i> -butyl alcohol)	75-65-0	$C_4H_{10}O$
2-pentanol	6032-29-7	$C_{5}H_{12}O$
3-pentanol	584-02-1	$C_5H_{12}O$
2-methyl-1-butanol	137-32-6	C5H12O
3-methyl-1-butanol (isoamyl alcohol)	123-51-3	C5H12O
2-methyl-2-butanol (tert-amyl alcohol)	75-85-4	$C_5H_{12}O$
3-methyl-2-butanol	598-75-4	$C_5H_{12}O$
2-methyl-2-pentanol	590-36-3	$C_6H_{14}O$
4-methyl-2-pentanol	108-11-2	$C_6H_{14}O$
2,2-dimethyl-1-butanol	1185-33-7	$C_6H_{14}O$
2-octanol	123-96-6	$C_8H_{18}O$
3-octanol	589-98-0	$C_8H_{18}O$
3-methyl-1-heptanol	1070-32-2	$C_8H_{18}O$
2-methyl-3-heptanol	18720-62-2	$C_8H_{18}O$
5-methyl-3-heptanol	18720-65-5	$C_8H_{18}O$
6-methyl-3-heptanol	18720-66-6	C ₈ H ₁₈ O
3-methyl-4-heptanol	1838-73-9	$C_8H_{18}O$
2,7-dimethyl-2-octanol	42007-73-8	$C_{10}H_{22}O$
Cycloalkar	ols	
cyclopentanol	96-41-3	$C_5H_{10}O$
cyclohexanol	108-93-0	$C_6H_{12}O$
Alkanediols, Alk	anetriols	
1,2-ethanediol (ethylene glycol)	107-21-1	$C_2H_6O_2$
1,2-propanediol	57-55-6	$C_3H_8O_2$
1,3-propanediol	504-63-2	$C_3H_8O_2$
1,2,3-propanetriol (glycerine)	56-81-5	$C_3H_8O_3$
1,3-butanediol	107-88-0	$C_4H_{10}O_2$
1,4-butanediol	110-63-4	$C_4H_{10}O_2$
1,5-pentanediol	111-29-5	$C_5H_{12}O_2$
2-methyl-2,4-pentanediol (hexylene glycol)	107-41-5	$C_6H_{14}O_2$
Ether Alka	nols	
3-oxa-1-butanol (2-methoxyethanol)	109-86-4	$C_3H_8O_2$
3-oxa-1-heptanol (2-butoxyethanol)	111-76-2	$C_6H_{14}O_2$
3-oxa-1,5-pentanediol (diethylene glycol)	111-46-6	$C_4H_{10}O_3$
3,6-dioxa-1-octanol (diethylene glycol monoethyl ether)	111-90-0	$C_6H_{14}O_3$
Aromatic Hydroxy	Derivatives	
3-methyl-1-hydroxybenzene (<i>m</i> -cresol)	108-39-4	C7H8O
4-allyl-2-methoxy-1-hydroxybenzene (eugenol)	97-53-0	$C_{10}H_{12}O_2$

Table 2. Characteristics of Data Sets: Overall Number of Data Points, N_p , Temperature and Pressure Ranges within the Liquid State, T_{min} , T_{max} , P_{min} , and P_{max} , Experimental Method Used, Types of Data, and Purities of Measured Samples

1								
ref	$N_{ m p}$	T_{\min}/\mathbf{K}	$T_{\rm max}/{ m K}$	P _{min} /MPa	P _{max} /MPa	meth ^a	data type ^{b}	sample purity ^c /%
				1-Unde	canol			
90-naz/sha	75	308.15	598.15	5.0	50.0	pi	D	99.9^{d}
				1 Dodo	canal	-		
80 mat/mak	91	222 15	249 15	0.0	40.0	mo	D	00 <i>d</i>
00 pog/sho	21	323.1J 909.15	540.15	0.9	40.0	ni	D	99°
90-maz/sma	74	290.15	596.15	5.0	50.0	pi	D Df	99.0 ⁻
93-gar/ban	50	323.15	373.15	1.0	10.0	mo	\mathbf{D}^{i}	>99.5m ^a
total	145	298.15	598.15	0.9	50.0			
				1-Tetrad	lecanol			
89-mat/mak	22	323.15	348.15	0.6	39.7	mo	D	99^d
				1-Hexad	ecanol			
89-mat/mak	10	348.15	348.15	0.3	40.1	mo	D	99^d
			:	2-Propanol (Isop	oropyl Alcohol)			
31-bri	39	273.15	368.15	49.0	1176.8	vb	D	
42-bri	18	298.15	348.15	980.7	4903.3	VS	D	
56-stu	10	303.15	303.15	25.3	202.7	va	D	
56-stu	1	303.15	303.15	101.3	101.3	va	D	
63-gol/hag	82	292.15	504.15	0.3	51.0	bu	D	
63-gol/hag	51	293 15	503 15	2.0	50.7	bu	ŝ	
71_ham/smi	1	303 15	303 15	101.3	101.3	va	Ď	QQ <i>e</i>
71_teo/eti	58	173 15	403.15	60	55.9	ia	S	>00 0d
70 aph/mam	J0 14	4/3.13	433.13	0.9	33.2	Id	ы БС	- 33.3 00.0md
/o-san/gag	14	293.15	298.15	1.0	7.0	ce	г, С Р	99.9m ^a
//-mor/inu	9	298.15	298.15	10.1	141.9	nd	D	

ref	$N_{ m p}$	T_{\min}/\mathbf{K}	T_{max}/K	P_{\min}/MPa	$P_{\rm max}/{\rm MPa}$	meth ^a	data type ^b	sample purity ^c /%
			2-Prop	anol (Isopropyl	Alcohol) (Contin	nued)	_	
77-mor/mor	1	298.15	298.15	101.3	101.3	va	D	
78-amb/cou	107	385.65	508.15	0.4	10.7	vl	\mathbf{D}^{f}	99.96m ^e
79-gol/vas	87	292.66	504.30	1.1	49.1	bu	D	
79-zol/gol	22	194.34	273.15	1.1	49.1	bu	D	
80-gol/vas	74	200.00	500.00	1.0	50.0	bu	D	99.84^{e}
80-rae/fin	60	298.15	398.15	1.0	411.9	vb	D	
87-kub/tan	40	283.15	348.15	17.8	174.1	cl	D	$>99.9w^{e}$
total	674	194.34	508.15	0.3	4903.3			
				2-Butanol (sec-l	Butyl Alcohol)			
76-sah/gag	14	293.15	298.15	1.0	7.0	ce	F. C	$99.5 \mathrm{m}^{e}$
87-kub/tan	48	283.15	348.15	15.4	206.5	cl	D	$>99.9w^{e}$
92-uos/kit	4	298.15	298.15	50.0	200.0	va	D	
total	66	283 15	348 15	1.0	206 5			
totai	00	200.10	2 M	othyl 1 propanol	Loobutyl Alcok	nol)		
63-gol/hag	80	294 15	539.95	0 1	52 8	bu	D	
63-gol/bag	75	203 15	533 15	2.0	50.7	bu	S	
76-sah/gag	14	203.15	298 15	2.0 1 0	7.0	CO CO	БС	99 0me
70 July gag	87	207.66	543 75	1.0	19.1	hu	Г, С D	00.0111 00.87e
79-zol/gol	7	240.22	2/1 01	1.1	40.1	bu	D	55.67
80-dol/vas	82	240.22	540.00	1.1	50.0	bu	D	99 81e
87-kuh/tan	18	283 15	348.15	15.8	206 5	cl	D	$> 00.04^{\circ}$
	00	200.10	540.15	15.0	200.5	CI CI	D	× 00.0W
total	393	240.00	543.75	0.1	206.5			
07114			2-Me	thyl-2-propanol	(tert-Butyl Alco	hol)		
87-kub/tan	21	323.15	348.15	6.7	95.7	cl	D	$>99.9W^{e}$
				2-Pent	tanol			
76-sah/gag	14	293.15	298.15	1.0	7.0	ce	F, C	$99.9m^d$
95-wap/kar	89	234.00	433.00	10.0	200.0	vs	D	> 99 ^d
total	103	234.00	433.00	1.0	200.0			
totai	100	201.00	100.00	1.0 0 Dt	200.0			
70 ash/rer	14	909.15	909.15	3-Pent	tanoi 7.0		EC	00 5
70-sall/gag	14	293.13	290.10 422.10	1.0	200.0	ce	г, С D	99.5m°
95-wap/kar	65	233.00	455.10	10.0	200.0	vs	D	~99-
total	99	233.60	433.10	1.0	200.0			
				2-Methyl-1	l-butanol			
76-sah/gag	14	293.15	298.15	1.0	7.0	ce	F, C	$99.5m^e$
			3-M	lethyl-1-butanol	(Isoamyl Alcoh	ol)		
76-sah/gag	14	293.15	298.15	1.0	7.0	ce	F, C	99.0m ^e
81-gol/vas	109	273.15	587.37	1.1	49.1	bu	D	96.82 ^e
total	199	979 15	597 27	1.0	40.1			
totai	123	275.15	367.37	1.0	49.1			
TO 1/				2-Methyl-2	2-butanol			
76-sah/gag	14	293.15	298.15	1.0	7.0	ce	F, C	$99.5m^e$
				3-Methyl-2	2-butanol			
76-sah/gag	14	293.15	298.15	1.0	7.0	ce	F, C	99.0m ^e
				2-Methyl-2	-nentanol			
76-sah/gag	14	293 15	298 15	1 0	7.0	CP.	ΕC	99 5m ^e
10 Sull Sug	11	200.10	200.10	1.0	1.0	cc	1,0	00.011
00 /1.1		000.15	000.15	4-Methyl-2	-pentanol		D	
92-u0s/kit	4	298.15	298.15	50.0	200.0	va	D	
				2,2-Dimethy	l-1-butanol			
91-ede/bar	38	258.20	290.00	10.0	130.0	vs	S	99.9^{e}
				2-Octa	anol			
68-joh/dan	23	258.90	363.60	100.0	400.0	vb	F	
J				2 Oct	anal			
33 bri	20	273 15	368 15	3-000 40 0	1176.8	vb	р	
68 joh/dan	29	273.13	361 10	49.0	1170.8	vb	D F	
00-jul/uali	20	230.30	501.10	100.0	400.0	٧D	1	
total	55	250.90	368.15	49.0	1176.8			
				3-Methyl-1	-heptanol			
33-bri	35	273.15	368.15	49.0	1176.8	vb	D	
				2-Methyl-3	-hentanol			
33-bri	32	273.15	368.15	2 Weenyr 0 49.0	1176.8	vb	D	
68-ioh/dan	37	216.40	363.50	100.0	400.0	vb	F	
totol	60	216 40	269.15	40.0	1176 9			
ισιαι	09	£10.4U	500.15	49.0	11/0.8			
	_			5-Methyl-3	-heptanol		_	
68-joh/dan	33	226.80	364.40	100.0	400.0	vb	F	
				6-Methvl-3	-heptanol			
33-bri	33	273.15	368.15	49.0	1176.8	vb	D	
				3-Methyl-4	-hentanol			
33-bri	34	273.15	368.15	49.0	1176.8	vb	D	
				-				

Table 2 (Continued)

ref	Np	T_{\min}/K	T _{max} /K	P _{min} /MPa	P _{max} /MPa	meth ^a	data type ^b	sample purity ^c /%
				2,7-Dimethy	l-2-octanol			
55-kus	40	298.15	353.15	19.6	196.1	nd	D	
				Cyclope	ntanol		a	
82-wis/wue	68	273.30	324.90	10.0	230.0	VS	S	99.9^{e}
00.1.1		040.00	010.00	Cyclohe	exanol		G	and
90-rie/sch	3	313.20	313.20	10.0	30.0	vs	S	98^a
001.		070 15	000 15	1,2-Ethanediol (E	Ethylene Glycol)		D	
32-Dri 41-gib/loo	34 20	2/3.15	368.15	49.0 25.0	11/6.8		D F	
71-ham/smi	20	303.15	303.15	101.3	101.3	va	D	99e
81-dic	13	295.00	295.00	740.0	51400.0	sw	D	98 ^e
82-kob/nis	4	298.15	298.15	49.0	196.1	vs	D	
83-nak/miy	1	298.15	298.15	101.3	101.3	va	D	
90-miy/tak	4	298.15	298.15	50.0	200.0	va	D	oo od
90-won/hay	18	298.20	348.20	0.7	6.9	mo	D	99.9 ^a
total	95	273.15	378.15	0.7	51400.0			
				1,2-Prop	anediol	_	_	
32-bri	41	273.15	368.15	49.0	1176.8	vb	D	0.04
71-ham/smi	1	303.15	303.15	101.3	101.3	va	D	99^{e}
90-miy/tak	4	298.15	298.15	50.0	200.0	va	D	
total	46	273.15	368.15	49.0	1176.8			
				1,3-Prop	anediol			
32-bri	34	273.15	368.15	49.0	1176.8	vb	D	
83-nak/miy	1	298.15	298.15	101.3	101.3	va	D	
90-miy/tak	8	298.15	298.15	20.0	200.0	va	D	
total	43	273.15	368.15	20.0	1176.8			
				1,2,3-Propanetr	iol (Glycerine)			
26-bri	6	303.15	303.15	196.1	1176.8	vs	D	
32-bri	41	273.15	368.15	49.0	1176.8	vb	D	
57-wal/ric	2	291.15	303.15	7660.0	17030.0	sw	D	00 7 d
69-mca/ior	98	223.15	353.15	49.0	274.0	VD	F D	99.7a ^a
83-nak/miv	13	295.00	295.00	101 3	101 3	sw va	D	99.5*
90-miy/tak	8	298.15	298.15	20.0	200.0	va va	D	
total	169	223.15	368.15	20.0	56100.0			
				1 3-Butz	nediol			
69-mcd/for	56	233.15	303.15	49.0	274.6	vb	F	
				1 A-Buts	nedial			
71-ham/smi	1	303.15	303.15	101.3	101.3	va	D	99^e
				1 5-Pont	anodiol			
69-mcd/for	45	253.15	308.15	49.0	274.6	vb	F	
			2 Mot	hul 9.4 poptanod	lial (Havalana Cl		-	
69-mcd/for	63	223.15	303.15	49.0	274.6	vb	F	
00 11104 101	00	220110	2000110	Ova 1 hutanal (2	Mothowyothono	n (2	-	
87-led	52	298 15	343 15	ی 10.0 at-1-butanoi	-Methoxyethano	1) vh	S	99 5 <i>d</i>
or icu	02	200.10	010.10	10.0	000.0	10	5	00.0
02 mal/waa	120	299 15	3-	Oxa-1-neptanol (2-Butoxyetnano	l) vh	D	00 0md
95-111al/w00	130	200.15	546.15	2.0	300.7	VD	D	99.911-
22 h:	24	979 15	3-Ox	a-1,5-pentanedio	l (Diethylene Gly	ycol)	D	
32-DF1	34	273.15	308.15	49.0	1170.8	VD	D	
aa 11/:	0.0	000.15	3,6-Dioxa-1-	octanol (Diethyle	ne Glycol Monoe	ethyl Ether)	D	
//-akh/ima	93	298.15	448.15	0.4	25.2	pı	D	
00.1 J/			3-M	lethyl-1-hydroxyl	benzene (<i>m</i> -Cres	ol)		
68-bel/erg	11	288.15	363.15	19.6	78.5	nd	D	~ 00 d
oo-sia/tej	21	298.20	338.2U 349.15	U./ 1.0	34.5 20.0	mo	U D	>99m ^a 90md
95-ran/lew	40 160	200.10 353 15	503 15	10 0	400 0	1110 C2	C D	>99 ^d
total	100	900.15	500.10	10.0	400.0	u	v	00
total	231	288.15	503.15	0.7	400.0			
001	_	076 17	4-Allyl-	2-methoxy-1-hyd	roxybenzene (Eu	ıgenol)	5	
32-bri	7	273.15	273.15	49.0	490.3	vb	D	

^{*a*} Method used for measurements: bu, buoyancy method; ca, densities obtained by integration from thermal expansivities measured by the calorimetric method; ce, densities evaluated by integration from isothermal compressibilities obtained by the ultracentrifuge method; cl, constant-volume cell with liquid piston; ia, isochoric apparatus; mo, mechanical oscillator method; nd, not described or stated in the reference; pi, piezometer of upspecified type; sw, shock wave method; va, Aime method; vb, variable-volume cell with bellows; vl, variable-volume cell with liquid piston; vs, variable-volume cell with solid piston. For the classification and description of the methods, see 85-tek/cib. ^{*b*} D, direct experimental data; S, smoothed data presented in the reference; C, calculated from other properties; F, values calculated from the smoothing equation reported by the researchers. ^{*c*} No letter, unspecified percent; a, mass percent assuming water as an impurity; m, mole percent; w, mass percent. ^{*d*} Purity of source material is given only. ^{*e*} Final purity of the sample. ^{*f*} IPTS-68 declared by the researchers.

and T_0 is a parameter with a preselected fixed value for which $C(T_0) = c_0$ and $B(T_0) = b_0$ hold. The reference values, $\rho(T, P_{\text{ref}}(T))$ and $P_{\text{ref}}(T)$, were selected in the same way as previously; i.e., at temperatures below the normal boiling temperature the densities at atmospheric pressure ($P_{ref} =$ 0.101 325 MPa) were used, while for higher temperatures the values along the saturation curve, i.e., saturated liquid densities and saturated vapor pressures, were employed. Experimental values of densities at atmospheric pressure or at saturation for the same sample reported along with compressed-liquid density data were preferably used for the reference density, $\rho(T, P_{ref})$, and thus the values of relative density, $\rho(T,P)/\rho(T,P_{ref} = 0.1 \text{ MPa or } P_{sat})$, reported by the authors were correlated by eq 1. If the reference values were not available in the original source, then densities obtained from the equations summarized in Appendix I were employed in the correlations. In those few cases where the correlations were performed in the temperature region above normal boiling temperature (i.e., where either both the reference density values $\rho(T, P_{ref} =$ $P_{\rm sat}$) and the compressed-liquid density data or relative quantities at temperatures above normal boiling point were available), saturated vapor pressures were calculated from the smoothing functions taken from the literature (see Appendix I) and used in the correlations. Reference densities, $\rho(T, P_{ref})$, reported in the papers are presented in the form of smoothing functions of temperature in Appendix II.

Adjustable parameters \vec{c} and \vec{b} of function 1 were obtained by minimizing the objective function

$$\phi(\vec{c},\vec{b}) = \sum_{j=1}^{N_p} w_j [\rho_j - \rho(T_j, P_j, \vec{c}, \vec{b})]^2$$
(4)

where ρ_j , T_j , P_j is the *j*th experimental data point, $\rho(T_j, P_j, \vec{c}, \vec{b})$ is the value calculated from function 1 with parameters \vec{c} and \vec{b} for the values T_j and P_j , and N_p is the number of experimental values of density taken into the correlation. Adjustable parameters were calculated by the Marquardt algorithm in double precision to minimize the influence of rounding errors. Statistical weights, w_j in eq 4, defined as

$$w_i = \mu_i / (\delta \rho_i)^2 \tag{5}$$

where $\delta \rho_j$ is the experimental uncertainty taken from the source database and either given by the authors (preferably) or estimated by a compiler for the *j*th density value in a correlated data set, were adjusted by varying the parameter μ_j ($\mu_j = 0$ for rejected values). The calculations of the parameters \vec{c} and \vec{b} were repeated until the final fit was obtained where the deviations between retained experimental and smoothed values were roughly equal to the modified experimental uncertainties, $\delta \rho / \mu_j^{1/2}$, i.e., where the weighted standard deviation of the fit was close to unity.

Results

Table 3 records the values of the parameters of eq 1 for each substance (except for 1,4-butanediol where only one experimental compressed-liquid data point was available) along with some statistical information of the fits defined as follows:

$$\mathbf{RMSD} = \{\sum_{j=1}^{N_{\rm p}} [\rho_j - \rho(T_j, P_j, \vec{c}, \vec{b})]^2 / N_{\rm p}\}^{1/2}$$
(6)

$$\text{RMSD}_{\rm r} / \% = 100 \{ \sum_{j=1}^{N_{\rm p}} [1 - \rho(T_j, P_j, \vec{c}, \vec{b}) / \rho_j]^2 / N_{\rm p} \}^{1/2}$$
(7)

bias =
$$\sum_{j=1}^{N_{\rm p}} [\rho_j - \rho(T_j, P_j, \vec{c}, \vec{b})]/N_{\rm p}$$
 (8)

$$\pm = \sum_{j=1}^{N_p} \operatorname{sign}[\rho_j - \rho(T_j, P_j, \vec{c}, \vec{b})] \cdot 1$$
(9)

$$s_{\rm w} = [\phi/(N_{\rm p} - N_{\rm C} - N_{\rm B} - 2)]^{1/2}$$
 (10)

where N_p is the overall number of experimental data points retained for the correlation. The characteristics are given in an absolute density scale (kg·m⁻³), which is more illustrative than in a relative density scale. Temperature and pressure ranges of validity of the fits given in the table allow one to avoid extrapolation using eq 1 with the parameters from Table 3 beyond P-T areas of retained data. The T-P areas that are not rectangular are shown in Figure 1, which provides crude information on the distribution of the retained data points. Nonrectangular T-P areas appeared mostly for measurements where the T-P range approached the vicinity of a solid–liquid equilibrium line.

Additional correlations were performed for several substances, mostly in those cases where two contradictory data sets were available. The results (parameters and characteristics) of those fits are given for each particular substance in either the text below or Table 5.

Table 4 summarizes some statistical information derived from the fits. Only those data subsets for which the temperature and pressure ranges are displayed in the table were retained in the correlations. The statistical characteristics of these subsets refer only to the data points retained in the correlation. On the other hand, the characteristics of the rejected subsets, i.e. those for which no *T* and *P* ranges are given in the table, illustrate the deviations of the rejected points from eq 1, but only for those values within *T*–*P* areas of the retained data (see Table 3 and Figure 1).

Values at high temperatures of some retained data sets were rejected in those cases where large deviations from the Tait equation were observed, and it was not possible to improve the fit by additional parameters b_i and c_i . Thus the P-T ranges of some fits do not cover the entire original range of retained data sets. Often the values at temperatures above normal boiling temperature were rejected since no reference values, $\rho(T, P_{sat})$, were available. The temperature and/or pressure ranges were sometimes enlarged by retaining less accurate and less reliable values in the ranges beyond those of more accurate data sets but only in those cases where the representation of accurate data was not affected by the enlargement and the enlargement did not result in a distortion of the B(T) function.

Similarly as in our previous paper [97-cib/hne], the absence of extremes and inflection points on the function B(T) (eq 3) of all final fits was checked.

A comparison of isothermal compressibilities, $\beta_T = -(1/V)(\partial V/\partial P)_T = (1/\rho)(\partial \rho/\partial P)_T$, calculated from the fits for P = 0.1 MPa with available values published in the literature is presented in Table 6, which provides a rough

Table 3. Parameters c_i , b_i , and T_0 of Eq 1, Temperature and Pressure Ranges,^a T_{min} , T_{max} , and P_{min} , and P_{max} , Absolute, RMSD, and Relative, RMSD_r, Root Mean Square Deviations, Biases, bias, Number of Data Points, N_p , \pm , and Weighted Standard Deviations, s_w

	1 undecanel	1 dedecarel	1 totradacana	l 1 hovodoco	al 2 propono	l 2 hutanal	2-methyl-	2-methyl-
	1-undecanor	1-00000001001	1-teti adecallo	I I-nexauecai			1-propation	2-propanoi
<i>c</i> ₀	0.100151	0.090832	0.095515	0.090779	0.089002	0.089025	0.086562	0.08336
<i>b</i> ₀ /MPa	108.8233	112.7012	121.6180	102.7420	79.1705	92.9212	72.5122	54.7762
$b_1/MPa\cdot K^{-1}$	-62.9018	-64.1566	-61.7828		-48.9692	-58.7366	-52.0834	-50.2672
<i>b</i> ₂/MPa∙K ^{−2}	13.5505	9.4975			-4.2479	-6.2402	-4.3429	
<i>b</i> ₃/MPa∙K ^{−3}	-1.3569							
T_0/K	323.15	323.15	323.15	348.15	298.15	298.15	323.15	323.15
T_{\min}/\mathbf{K}	308.15	298.15	323.15	348.15	273.15	283.15	283.15	323.15
$T_{\rm max}/{\rm K}$	598.15	598.15	348.15	348.15	400.00	348.15	376.52	348.15
P _{min} /MPa	5.00	0.85	0.55	0.30	1.00	1.00	1.00	6.70
P _{max} /MPa	50.00	50.00	39.65	40.10	173.90	206.50	206.50	95.70
RMSD/kg⋅m ⁻³	0.814	0.710	0.091	0.077	0.424	0.526	0.527	0.121
RMSD _r /%	0.116	0.100	0.011	0.009	0.054	0.061	0.067	0.015
bias/kg·m ⁻³	-0.098	0.165	-0.003	-0.002	0.098	0.340	0.302	0.009
Np	75	131	22	10	85	66	117	21
±	-11	31	-2	0	17	42	55	-1
$S_{ m W}$	1.160	1.070	1.010	0.995	0.969	0.935	1.009	1.013
	2-pentanol	3-pentanol	2-methyl- 1-butanol	3-methyl- 1-butanol	2-methyl- 2-butanol	3-methyl- 2-butanol	2-methyl- 2-pentanol	4-methyl- 2-pentanol
6	0 099534	0.095181	0 071788	0.069883	0.065996	0.063648	0.060714	0.082676
b_0/MPa	91.5486	111.7756	82.9742	80.0472	65.2033	69.2284	62.4508	85.8117
$b_0/MPa\cdot K^{-1}$	-63.4627	-74,4979	-43.7423	-10.8179	-58.8448	-57.6943	-49.9541	00.0117
$b_2/MPa\cdot K^{-2}$	13.9496	12.5030	-3.1.120	-20.1506				
$\tilde{T_0}/\mathbf{K}$	313.20	283.60	293.15	273.15	293.15	293.15	293.15	298.15
$T_{\rm min}/{ m K}$	234.00	233.60	293.15	273.15	293.15	293.15	293.15	298.15
$T_{\rm max}/{ m K}$	373.40	373.40	298.15	386.90	298.15	298.15	298.15	298.15
P _{min} /MPa	1.00	1.00	1.00	1.00	1.00	1.00	1.00	50.00
P _{max} /MPa	200.00	200.00	7.00	49.14	7.00	7.00	7.00	200.00
RMSD/kg∙m ⁻³	0.315	0.268	0.004	0.616	0.003	0.002	0.004	0.250
RMSD _r /%	0.037	0.032	0.000	0.079	0.000	0.000	0.001	0.029
bias/kg∙m ⁻³	-0.008	0.044	0.001	-0.159	0.000	0.000	0.000	0.004
Np	70	63	14	35	14	14	14	4
±	-4	-3	Z 0.004	-3	0	2 002	- <u>z</u>	Z 1 021
S _w	1.102	1.096	0.004	0.830	0.004	0.003	0.005	1.031
	2,2- dimethyl- 1-butanol	2-octanol	3-octanol	3-methyl- 1-heptanol	2-methyl- 3-heptanol	5-methyl- 3-heptanol	6-methyl- 3-heptanol	3-methyl- 4-heptanol
0	2,2- dimethyl- 1-butanol	2-octanol	3-octanol	3-methyl- 1-heptanol	2-methyl- 3-heptanol	5-methyl- 3-heptanol	6-methyl- 3-heptanol	3-methyl- 4-heptanol
c₀ b√MPa	2,2- dimethyl- 1-butanol 0.066655 76.8570	2-octanol 0.090457 114.7054	3-octanol 0.093694 76.1936	3-methyl- 1-heptanol 0.094500 108.1446	2-methyl- 3-heptanol 0.095988 85.2795	5-methyl- 3-heptanol 0.076436 113.6320	6-methyl- 3-heptanol 0.092418 93.1421	3-methyl- 4-heptanol 0.090744 92.7699
b_0/MPa	2,2- dimethyl- 1-butanol 0.066655 76.8570 -30.5164	2-octanol 0.090457 114.7054 -72.1325	3-octanol 0.093694 76.1936 -43.1838	3-methyl- 1-heptanol 0.094500 108.1446 -58.6203	2-methyl- 3-heptanol 0.095988 85.2795 -14.2752	5-methyl- 3-heptanol 0.076436 113.6320 -64.8075	6-methyl- 3-heptanol 0.092418 93.1421 -57.1193	3-methyl- 4-heptanol 0.090744 92.7699 -63.2003
c_0 b_0/MPa $b_1/MPa\cdot K^{-1}$ $b_2/MPa\cdot K^{-2}$	2,2- dimethyl- 1-butanol 0.066655 76.8570 -30.5164	2-octanol 0.090457 114.7054 -72.1325 20.7376	3-octanol 0.093694 76.1936 -43.1838 18.3398	3-methyl- 1-heptanol 0.094500 108.1446 -58.6203 24.3655	2-methyl- 3-heptanol 0.095988 85.2795 -14.2752 40.9261	5-methyl- 3-heptanol 0.076436 113.6320 -64.8075 14.5875	6-methyl- 3-heptanol 0.092418 93.1421 -57.1193 12.3115	3-methyl- 4-heptanol 0.090744 92.7699 -63.2003 21.8650
c_0 b_0/MPa $b_1/MPa\cdot K^{-1}$ $b_2/MPa\cdot K^{-2}$ T_0/K	2,2- dimethyl- 1-butanol 0.066655 76.8570 -30.5164 290.00	2-octanol 0.090457 114.7054 -72.1325 20.7376 289.00	3-octanol 0.093694 76.1936 -43.1838 18.3398 368.15	3-methyl- 1-heptanol 0.094500 108.1446 -58.6203 24.3655 323.15	2-methyl- 3-heptanol 0.095988 85.2795 -14.2752 40.9261 368.15	5-methyl- 3-heptanol 0.076436 113.6320 -64.8075 14.5875 248.40	6-methyl- 3-heptanol 0.092418 93.1421 -57.1193 12.3115 323.15	3-methyl- 4-heptanol 0.090744 92.7699 -63.2003 21.8650 323.15
c_0 b_0/MPa $b_1/MPa\cdot K^{-1}$ $b_2/MPa\cdot K^{-2}$ T_0/K T_{min}/K	2,2- dimethyl- 1-butanol 0.066655 76.8570 -30.5164 290.00 264.80	2-octanol 0.090457 114.7054 -72.1325 20.7376 289.00 258.90	3-octanol 0.093694 76.1936 -43.1838 18.3398 368.15 273.15	3-methyl- 1-heptanol 0.094500 108.1446 -58.6203 24.3655 323.15 273.15	2-methyl- 3-heptanol 3 0.095988 85.2795 -14.2752 40.9261 368.15 273.15	5-methyl- 3-heptanol 0.076436 113.6320 -64.8075 14.5875 248.40 226.80	6-methyl- 3-heptanol 0.092418 93.1421 -57.1193 12.3115 323.15 273.15	3-methyl- 4-heptanol 0.090744 92.7699 -63.2003 21.8650 323.15 273.15
c_0 b_0 /MPa b_1 /MPa·K ⁻¹ b_2 /MPa·K ⁻² T_0 /K T_{min} /K T_{max} /K	2,2- dimethyl- 1-butanol 0.066655 76.8570 -30.5164 290.00 264.80 290.00	2-octanol 0.090457 114.7054 -72.1325 20.7376 289.00 258.90 363.60	3-octanol 0.093694 76.1936 -43.1838 18.3398 368.15 273.15 368.15	3-methyl- 1-heptanol 0.094500 108.1446 -58.6203 24.3655 323.15 273.15 368.15	2-methyl- 3-heptanol 0.095988 85.2795 -14.2752 40.9261 368.15 273.15 368.15	5-methyl- 3-heptanol 0.076436 113.6320 -64.8075 14.5875 248.40 226.80 364.40	6-methyl- 3-heptanol 0.092418 93.1421 -57.1193 12.3115 323.15 273.15 368.15	3-methyl- 4-heptanol 0.090744 92.7699 -63.2003 21.8650 323.15 273.15 368.15
^{C0} b0/MPa b1/MPa·K ⁻¹ b2/MPa·K ⁻² T0/K Tmin/K Tmax/K Pmin/MPa	2,2- dimethyl- 1-butanol 0.066655 76.8570 -30.5164 290.00 264.80 290.00 10.00	2-octanol 0.090457 114.7054 -72.1325 20.7376 289.00 258.90 363.60 100.00	3-octanol 0.093694 76.1936 -43.1838 18.3398 368.15 273.15 368.15 49.03	3-methyl- 1-heptanol 0.094500 108.1446 -58.6203 24.3655 323.15 273.15 368.15 49.03	2-methyl- 3-heptanol 0.095988 85.2795 -14.2752 40.9261 368.15 273.15 368.15 49.03	5-methyl- 3-heptanol 0.076436 113.6320 -64.8075 14.5875 248.40 226.80 364.40 100.00	6-methyl- 3-heptanol 0.092418 93.1421 -57.1193 12.3115 323.15 273.15 368.15 49.03	3-methyl- 4-heptanol 0.090744 92.7699 -63.2003 21.8650 323.15 273.15 368.15 49.03
^{C0} b ₀ /MPa b ₁ /MPa·K ⁻¹ b ₂ /MPa·K ⁻² T ₀ /K T _{min} /K T _{max} /K P _{min} /MPa P _{max} /MPa	2,2- dimethyl- 1-butanol 0.066655 76.8570 -30.5164 290.00 264.80 290.00 10.00 130.00	2-octanol 0.090457 114.7054 -72.1325 20.7376 289.00 258.90 363.60 100.00 400.00	3-octanol 0.093694 76.1936 -43.1838 18.3398 368.15 273.15 368.15 49.03 1176.80	3-methyl- 1-heptanol 0.094500 108.1446 -58.6203 24.3655 323.15 273.15 368.15 49.03 1176.80	2-methyl- 3-heptanol : 0.095988 85.2795 -14.2752 40.9261 368.15 273.15 368.15 49.03 1176.80	5-methyl- 3-heptanol 0.076436 113.6320 -64.8075 14.5875 248.40 226.80 364.40 100.00 400.00	6-methyl- 3-heptanol 0.092418 93.1421 -57.1193 12.3115 323.15 273.15 368.15 49.03 1176.80	3-methyl- 4-heptanol 0.090744 92.7699 -63.2003 21.8650 323.15 273.15 368.15 49.03 1176.80
^{C0} b ₀ /MPa b ₁ /MPa•K ⁻¹ b ₂ /MPa•K ⁻² T ₀ /K T _{min} /K T _{max} /K P _{min} /MPa P _{max} /MPa RMSD/kg•m ⁻³	2,2- dimethyl- 1-butanol 0.066655 76.8570 -30.5164 290.00 264.80 290.00 10.00 130.00 0.320	2-octanol 0.090457 114.7054 -72.1325 20.7376 289.00 258.90 363.60 100.00 400.00 0.619	3-octanol 0.093694 76.1936 -43.1838 18.3398 368.15 273.15 368.15 49.03 1176.80 0.415	3-methyl- 1-heptanol 0.094500 108.1446 -58.6203 24.3655 323.15 273.15 368.15 49.03 1176.80 0.718	2-methyl- 3-heptanol 0.095988 85.2795 -14.2752 40.9261 368.15 273.15 368.15 49.03 1176.80 1.479	5-methyl- 3-heptanol 0.076436 113.6320 -64.8075 14.5875 248.40 226.80 364.40 100.00 400.00 0.953	6-methyl- 3-heptanol 0.092418 93.1421 -57.1193 12.3115 323.15 273.15 368.15 49.03 1176.80 0.777	3-methyl- 4-heptanol 0.090744 92.7699 -63.2003 21.8650 323.15 273.15 368.15 49.03 1176.80 0.632
^{C0} b ₀ /MPa b ₁ /MPa·K ⁻¹ b ₂ /MPa·K ⁻² T ₀ /K T _{min} /K T _{max} /K P _{min} /MPa P _{max} /MPa RMSD/kg·m ⁻³ RMSD _r /%	2,2- dimethyl- 1-butanol 0.066655 76.8570 -30.5164 290.00 264.80 290.00 10.00 130.00 0.320 0.037	2-octanol 0.090457 114.7054 -72.1325 20.7376 289.00 258.90 363.60 100.00 400.00 0.619 0.068	3-octanol 0.093694 76.1936 -43.1838 18.3398 368.15 273.15 368.15 49.03 1176.80 0.415 0.046	3-methyl- 1-heptanol 0.094500 108.1446 -58.6203 24.3655 323.15 273.15 368.15 49.03 1176.80 0.718 0.079	2-methyl- 3-heptanol 0.095988 85.2795 -14.2752 40.9261 368.15 273.15 368.15 49.03 1176.80 1.479 0.166	5-methyl- 3-heptanol 0.076436 113.6320 -64.8075 14.5875 248.40 226.80 364.40 100.00 400.00 0.953 0.107	6-methyl- 3-heptanol 0.092418 93.1421 -57.1193 12.3115 323.15 273.15 368.15 49.03 1176.80 0.777 0.083	3-methyl- 4-heptanol 0.090744 92.7699 -63.2003 21.8650 323.15 273.15 368.15 49.03 1176.80 0.632 0.067
^{C0} b ₀ /MPa b ₁ /MPa•K ⁻¹ b ₂ /MPa•K ⁻² T ₀ /K T _{min} /K T _{max} /K P _{min} /MPa P _{max} /MPa RMSD/kg•m ⁻³ RMSD _r /% bias/kg•m ⁻³	2,2- dimethyl- 1-butanol 0.066655 76.8570 -30.5164 290.00 264.80 290.00 10.00 130.00 0.320 0.037 -0.031	2-octanol 0.090457 114.7054 -72.1325 20.7376 289.00 258.90 363.60 100.00 400.00 0.619 0.068 0.001	3-octanol 0.093694 76.1936 -43.1838 18.3398 368.15 273.15 368.15 49.03 1176.80 0.415 0.046 0.037	3-methyl- 1-heptanol 0.094500 108.1446 -58.6203 24.3655 323.15 273.15 368.15 49.03 1176.80 0.718 0.079 0.071	2-methyl- 3-heptanol 0.095988 85.2795 -14.2752 40.9261 368.15 273.15 368.15 49.03 1176.80 1.479 0.166 0.117	5-methyl- 3-heptanol 0.076436 113.6320 -64.8075 14.5875 248.40 226.80 364.40 100.00 400.00 0.953 0.107 -0.040 22	6-methyl- 3-heptanol 0.092418 93.1421 -57.1193 12.3115 323.15 273.15 368.15 49.03 1176.80 0.777 0.083 0.067	3-methyl- 4-heptanol 0.090744 92.7699 -63.2003 21.8650 323.15 273.15 368.15 49.03 1176.80 0.632 0.067 0.066
c_0 b_0/MPa $b_1/MPa\cdot K^{-1}$ $b_2/MPa\cdot K^{-2}$ T_0/K T_{min}/K T_{max}/K P_{min}/MPa P_{max}/MPa $RMSD/kg\cdot m^{-3}$ $RMSD_r/\%$ bias/kg·m ⁻³ N_p	2,2- dimethyl- 1-butanol 0.066655 76.8570 -30.5164 290.00 264.80 290.00 10.00 130.00 0.320 0.037 -0.031 36	2-octanol 0.090457 114.7054 -72.1325 20.7376 289.00 258.90 363.60 100.00 400.00 0.619 0.068 0.001 23	3-octanol 0.093694 76.1936 -43.1838 18.3398 368.15 273.15 368.15 49.03 1176.80 0.415 0.046 0.037 29	3-methyl- 1-heptanol 0.094500 108.1446 -58.6203 24.3655 323.15 273.15 368.15 49.03 1176.80 0.718 0.079 0.071 35	2-methyl- 3-heptanol 0.095988 85.2795 -14.2752 40.9261 368.15 273.15 368.15 49.03 1176.80 1.479 0.166 0.117 30	5-methyl- 3-heptanol 0.076436 113.6320 -64.8075 14.5875 248.40 226.80 364.40 100.00 400.00 0.953 0.107 -0.040 33	6-methyl- 3-heptanol 0.092418 93.1421 -57.1193 12.3115 323.15 273.15 368.15 49.03 1176.80 0.777 0.083 0.067 33	3-methyl- 4-heptanol 0.090744 92.7699 -63.2003 21.8650 323.15 273.15 368.15 49.03 1176.80 0.632 0.067 0.066 34
c_0 b_0/MPa $b_1/MPa\cdot K^{-1}$ $b_2/MPa\cdot K^{-2}$ T_0/K T_{min}/K T_{max}/K P_{max}/MPa $RMSD/kg\cdot m^{-3}$ $RMSD_r/\%$ bias/kg·m ⁻³ N_p \pm s_w	2,2- dimethyl- 1-butanol 0.066655 76.8570 -30.5164 290.00 264.80 290.00 10.00 130.00 0.320 0.037 -0.031 36 -6 0.830	2-octanol 0.090457 114.7054 -72.1325 20.7376 289.00 258.90 363.60 100.00 400.00 0.619 0.068 0.001 23 3 1.085	3-octanol 0.093694 76.1936 -43.1838 18.3398 368.15 273.15 368.15 49.03 1176.80 0.415 0.046 0.037 29 -1 1.075	3-methyl- 1-heptanol 0.094500 108.1446 -58.6203 24.3655 323.15 273.15 368.15 49.03 1176.80 0.718 0.079 0.071 35 -1 1.075	2-methyl- 3-heptanol 0.095988 85.2795 -14.2752 40.9261 368.15 273.15 368.15 49.03 1176.80 1.479 0.166 0.117 30 2 0.902	5-methyl- 3-heptanol 0.076436 113.6320 -64.8075 14.5875 248.40 226.80 364.40 100.00 400.00 0.953 0.107 -0.040 33 -3 1.077	6-methyl- 3-heptanol 0.092418 93.1421 -57.1193 12.3115 323.15 273.15 368.15 49.03 1176.80 0.777 0.083 0.067 33 1 0.975	3-methyl- 4-heptanol 0.090744 92.7699 -63.2003 21.8650 323.15 273.15 368.15 49.03 1176.80 0.632 0.067 0.066 34 2 1.062
$\begin{array}{c} c_0\\ b_0/\text{MPa}\\ b_1/\text{MPa}\cdot\text{K}^{-1}\\ b_2/\text{MPa}\cdot\text{K}^{-2}\\ T_0/\text{K}\\ T_{\min}/\text{K}\\ T_{\max}/\text{K}\\ P_{\min}/\text{MPa}\\ R_{\max}/\text{MPa}\\ RMSD/\text{kg}\cdot\text{m}^{-3}\\ RMSD/\text{kg}\cdot\text{m}^{-3}\\ N_p\\ \pm\\ s_w \end{array}$	2,2- dimethyl- 1-butanol 0.066655 76.8570 -30.5164 290.00 264.80 290.00 10.00 130.00 0.320 0.037 -0.031 36 -6 0.830	2-octanol 0.090457 114.7054 -72.1325 20.7376 289.00 258.90 363.60 100.00 400.00 0.619 0.068 0.001 23 3 1.085	3-octanol 0.093694 76.1936 -43.1838 18.3398 368.15 273.15 368.15 49.03 1176.80 0.415 0.046 0.037 29 -1 1.075	3-methyl- 1-heptanol 0.094500 108.1446 -58.6203 24.3655 323.15 273.15 368.15 49.03 1176.80 0.718 0.079 0.071 35 -1 1.075	2-methyl- 3-heptanol 0.095988 85.2795 -14.2752 40.9261 368.15 273.15 368.15 49.03 1176.80 1.479 0.166 0.117 30 2 0.902	5-methyl- 3-heptanol 0.076436 113.6320 -64.8075 14.5875 248.40 226.80 364.40 100.00 400.00 0.953 0.107 -0.040 33 -3 1.077	6-methyl- 3-heptanol 0.092418 93.1421 -57.1193 12.3115 323.15 273.15 368.15 49.03 1176.80 0.777 0.083 0.067 33 1 0.975	3-methyl- 4-heptanol 0.090744 92.7699 -63.2003 21.8650 323.15 273.15 368.15 49.03 1176.80 0.632 0.066 34 2 1.062
$\begin{array}{c} c_0\\ b_0/\text{MPa}\\ b_1/\text{MPa}\cdot\text{K}^{-1}\\ b_2/\text{MPa}\cdot\text{K}^{-2}\\ T_0/\text{K}\\ T_{\text{min}}/\text{K}\\ T_{\text{max}}/\text{K}\\ P_{\text{min}}/\text{MPa}\\ P_{\text{max}}/\text{MPa}\\ RMSD/\text{kg}\cdot\text{m}^{-3}\\ RMSD_r/\%\\ \text{bias/kg}\cdot\text{m}^{-3}\\ N_p\\ \pm\\ s_w \end{array}$	2,2- dimethyl- 1-butanol 0.066655 76.8570 - 30.5164 290.00 264.80 290.00 10.00 130.00 0.320 0.037 -0.031 36 -6 0.830 2,7- dimethyl-	2-octanol 0.090457 114.7054 -72.1325 20.7376 289.00 258.90 363.60 100.00 400.00 0.619 0.068 0.001 23 3 1.085	3-octanol 0.093694 76.1936 -43.1838 18.3398 368.15 273.15 368.15 49.03 1176.80 0.415 0.046 0.037 29 -1 1.075	3-methyl- 1-heptanol 0.094500 108.1446 -58.6203 24.3655 323.15 273.15 368.15 49.03 1176.80 0.718 0.079 0.071 35 -1 1.075	2-methyl- 3-heptanol 0.095988 85.2795 -14.2752 40.9261 368.15 273.15 368.15 49.03 1176.80 1.479 0.166 0.117 30 2 0.902 1.2-	5-methyl- 3-heptanol 0.076436 113.6320 -64.8075 14.5875 248.40 226.80 364.40 100.00 0.953 0.107 -0.040 33 -3 1.077 1.3-	6-methyl- 3-heptanol 0.092418 93.1421 -57.1193 12.3115 323.15 273.15 368.15 49.03 1176.80 0.777 0.083 0.067 33 1 0.975	3-methyl- 4-heptanol 0.090744 92.7699 -63.2003 21.8650 323.15 273.15 368.15 49.03 1176.80 0.662 0.066 34 2 1.062 1.3-
c_0 b_0/MPa $b_1/MPa \cdot K^{-1}$ $b_2/MPa \cdot K^{-2}$ T_0/K T_{min}/K T_{max}/K P_{min}/MPa P_{max}/MPa $RMSD/kg \cdot m^{-3}$ N_p \pm s_w	2,2- dimethyl- 1-butanol 0.066655 76.8570 -30.5164 290.00 264.80 290.00 10.00 130.00 0.320 0.037 -0.031 36 -6 0.830 2,7- dimethyl- 2-octanol	2-octanol 0.090457 114.7054 - 72.1325 20.7376 289.00 258.90 363.60 100.00 400.00 0.619 0.068 0.001 23 3 1.085	3-octanol 0.093694 76.1936 -43.1838 18.3398 368.15 273.15 368.15 49.03 1176.80 0.415 0.046 0.037 29 -1 1.075 cyclohexanol	3-methyl- 1-heptanol 0.094500 108.1446 -58.6203 24.3655 323.15 273.15 368.15 49.03 1176.80 0.718 0.079 0.071 35 -1 1.075 1,2- ethanediol	2-methyl- 3-heptanol : 0.095988 85.2795 -14.2752 40.9261 368.15 273.15 368.15 49.03 1176.80 1.479 0.166 0.117 30 2 0.902 1,2- propanedial	5-methyl- 3-heptanol 0.076436 113.6320 -64.8075 14.5875 248.40 226.80 364.40 100.00 0.953 0.107 -0.040 33 -3 1.077 1,3- propanedial	6-methyl- 3-heptanol 0.092418 93.1421 -57.1193 12.3115 323.15 273.15 368.15 49.03 1176.80 0.777 0.083 0.067 33 1 0.975	3-methyl- 4-heptanol 0.090744 92.7699 -63.2003 21.8650 323.15 273.15 368.15 49.03 1176.80 0.632 0.066 34 2 1.062 1,3- butanediol
c_0 b_0/MPa $b_1/MPa\cdot K^{-1}$ $b_2/MPa\cdot K^{-2}$ T_0/K T_{min}/K T_{min}/K P_{max}/MPa P_{max}/MPa $RMSD/kg\cdot m^{-3}$ $RMSD_r/\%$ bias/kg·m ⁻³ N_p \pm s_w	2,2- dimethyl- 1-butanol 0.066655 76.8570 -30.5164 290.00 264.80 290.00 10.00 130.00 0.320 0.037 -0.031 36 -6 0.830 2,7- dimethyl- 2-octanol	2-octanol 0.090457 114.7054 -72.1325 20.7376 289.00 258.90 363.60 100.00 400.00 0.619 0.068 0.001 23 3 1.085 cyclopentanol	3-octanol 0.093694 76.1936 -43.1838 18.3398 368.15 273.15 368.15 49.03 1176.80 0.415 0.046 0.037 29 -1 1.075 cyclohexanol	3-methyl- 1-heptanol 0.094500 108.1446 -58.6203 24.3655 323.15 273.15 368.15 49.03 1176.80 0.718 0.079 0.071 35 -1 1.075 1,2- ethanediol	2-methyl- 3-heptanol 0.095988 85.2795 -14.2752 40.9261 368.15 273.15 368.15 49.03 1176.80 1.479 0.166 0.117 30 2 0.902 1,2- propanediol	5-methyl- 3-heptanol 0.076436 113.6320 -64.8075 14.5875 248.40 226.80 364.40 100.00 400.00 0.953 0.107 -0.040 33 -3 1.077 1,3- propanediol	6-methyl- 3-heptanol 0.092418 93.1421 -57.1193 12.3115 323.15 273.15 368.15 49.03 1176.80 0.777 0.083 0.067 33 1 0.975	3-methyl- 4-heptanol 0.090744 92.7699 -63.2003 21.8650 323.15 273.15 368.15 49.03 1176.80 0.632 0.067 0.066 34 2 1.062 1,3- butanediol
C_{0} b_{0}/MPa $b_{1}/MPa \cdot K^{-1}$ $b_{2}/MPa \cdot K^{-2}$ T_{0}/K T_{min}/K T_{max}/K P_{min}/MPa P_{max}/MPa $RMSD/kg \cdot m^{-3}$ $RMSD_{r}\%$ $bias/kg \cdot m^{-3}$ N_{p} \pm s_{w}	2,2- dimethyl- 1-butanol 0.066655 76.8570 -30.5164 290.00 264.80 290.00 10.00 130.00 0.320 0.037 -0.031 36 -6 0.830 2,7- dimethyl- 2-octanol 0.083212 192.1621	2-octanol 0.090457 114.7054 -72.1325 20.7376 289.00 258.90 363.60 100.00 400.00 0.619 0.068 0.001 23 3 1.085 cyclopentanol 0.086191 191.4402	3-octanol 0.093694 76.1936 -43.1838 18.3398 368.15 273.15 368.15 49.03 1176.80 0.415 0.046 0.037 29 -1 1.075 cyclohexanol 0.0613422 100.7322	3-methyl- 1-heptanol 0.094500 108.1446 -58.6203 24.3655 323.15 273.15 368.15 49.03 1176.80 0.718 0.079 0.071 35 -1 1.075 1,2- ethanediol 0.095014 259.2450	2-methyl- 3-heptanol 0.095988 85.2795 -14.2752 40.9261 368.15 273.15 368.15 49.03 1176.80 1.479 0.166 0.117 30 2 0.902 1,2- propanediol 0.098352 240.4624	5-methyl- 3-heptanol 0.076436 113.6320 -64.8075 14.5875 248.40 226.80 364.40 100.00 400.00 0.953 0.107 -0.040 33 -3 1.077 1,3- propanediol 0.096354 921 1020	6-methyl- 3-heptanol 0.092418 93.1421 -57.1193 12.3115 323.15 273.15 368.15 49.03 1176.80 0.777 0.083 0.067 33 1 0.975 1,2,3- propanetriol 0.114255 527.4020	3-methyl- 4-heptanol 0.090744 92.7699 -63.2003 21.8650 323.15 273.15 368.15 49.03 1176.80 0.632 0.067 0.066 34 2 1.062 1.3- butanediol 0.115162 200.6715
C_0 b_0/MPa $b_1/MPa \cdot K^{-1}$ $b_2/MPa \cdot K^{-2}$ T_0/K T_{min}/K T_{max}/K P_{max}/MPa $RMSD/kg \cdot m^{-3}$ $RMSD_r/\%$ $bias/kg \cdot m^{-3}$ N_p \pm S_w C_0 b_0/MPa	2,2- dimethyl- 1-butanol 0.066655 76.8570 -30.5164 290.00 264.80 290.00 10.00 130.00 0.320 0.037 -0.031 36 -6 0.830 2,7- dimethyl- 2-octanol 0.083212 123.1681	2-octanol 0.090457 114.7054 -72.1325 20.7376 289.00 258.90 363.60 100.00 400.00 0.619 0.068 0.001 23 3 1.085 cyclopentanol 0.086191 121.4409 2.8412	3-octanol 0.093694 76.1936 -43.1838 18.3398 368.15 273.15 368.15 49.03 1176.80 0.415 0.046 0.037 29 -1 1.075 cyclohexanol 0.061342 100.7280	3-methyl- 1-heptanol 0.094500 108.1446 -58.6203 24.3655 323.15 273.15 368.15 49.03 1176.80 0.718 0.079 0.071 35 -1 1.075 1,2- ethanediol 0.095014 258.3450 1015155	2-methyl- 3-heptanol 0.095988 85.2795 -14.2752 40.9261 368.15 273.15 368.15 49.03 1176.80 1.479 0.166 0.117 30 2 0.902 1.2- propanediol 0.098352 249.4084 56 5749	5-methyl- 3-heptanol 0.076436 113.6320 -64.8075 14.5875 248.40 226.80 364.40 100.00 400.00 0.953 0.107 -0.040 33 -3 1.077 1,3- propanediol 0.096354 231.1928 62.0020	6-methyl- 3-heptanol 0.092418 93.1421 -57.1193 12.3115 323.15 273.15 368.15 49.03 1176.80 0.777 0.083 0.067 33 1 0.975 1,2,3- propanetriol 0.114255 527.4930 1292 6162	3-methyl- 4-heptanol 0.090744 92.7699 -63.2003 21.8650 323.15 273.15 368.15 49.03 1176.80 0.632 0.067 0.066 34 2 1.062 1.3- butanediol 0.115162 290.6718 0.4212
c_{0} b_{0}/MPa $b_{1}/MPa\cdot K^{-1}$ $b_{2}/MPa\cdot K^{-2}$ T_{0}/K T_{min}/K T_{max}/K P_{max}/MPa $RMSD/kg\cdot m^{-3}$ $RMSD_{r}\%$ $bias/kg\cdot m^{-3}$ N_{p} \pm S_{w} c_{0} b_{0}/MPa $b_{1}/MPa\cdot K^{-1}$ $b_{0}/MPa\cdot K^{-1}$	2,2- dimethyl- 1-butanol 0.066655 76.8570 -30.5164 290.00 264.80 290.00 10.00 130.00 0.320 0.037 -0.031 36 -6 0.830 2,7- dimethyl- 2-octanol 0.083212 123.1681 -120.2454 57.6529	2-octanol 0.090457 114.7054 -72.1325 20.7376 289.00 258.90 363.60 100.00 400.00 0.619 0.068 0.001 23 3 1.085 cyclopentanol 0.086191 121.4409 -2.8413 140.6110	3-octanol 0.093694 76.1936 -43.1838 18.3398 368.15 273.15 368.15 49.03 1176.80 0.415 0.046 0.037 29 -1 1.075 cyclohexanol 0.061342 100.7280	3-methyl- 1-heptanol 0.094500 108.1446 -58.6203 24.3655 323.15 273.15 368.15 49.03 1176.80 0.718 0.079 0.071 35 -1 1.075 1,2- ethanediol 0.095014 258.3450 -101.5158 12.7592	2-methyl- 3-heptanol 0.095988 85.2795 -14.2752 40.9261 368.15 273.15 368.15 49.03 1176.80 1.479 0.166 0.117 30 2 0.902 1.2- propanediol 0.098352 249.4084 -56.5748 -25.9646	5-methyl- 3-heptanol 0.076436 113.6320 -64.8075 14.5875 248.40 226.80 364.40 100.00 400.00 0.953 0.107 -0.040 33 -3 1.077 1.3- propanediol 0.096354 231.1928 -62.9969 -69.2240	6-methyl- 3-heptanol 0.092418 93.1421 -57.1193 12.3115 323.15 273.15 368.15 49.03 1176.80 0.777 0.083 0.067 33 1 0.975 1,2,3- propanetriol 0.114255 527.4930 -133.6162 4.4801	3-methyl- 4-heptanol 0.090744 92.7699 -63.2003 21.8650 323.15 273.15 368.15 49.03 1176.80 0.632 0.067 0.066 34 2 1.062 1.3- butanediol 0.115162 290.6718 -94.8613 -7.9105
c_0 b_0/MPa $b_1/MPa\cdot K^{-1}$ $b_2/MPa\cdot K^{-2}$ T_0/K T_{min}/K T_{max}/K P_{max}/MPa $RMSD/kg\cdot m^{-3}$ $RMSD_r/\%$ $bias/kg\cdot m^{-3}$ N_p \pm S_w c_0 b_0/MPa $b_1/MPa\cdot K^{-1}$ $b_2/MPa\cdot K^{-2}$ T_0/K	2,2- dimethyl- 1-butanol 0.066655 76.8570 -30.5164 290.00 264.80 290.00 10.00 130.00 0.320 0.037 -0.031 36 -6 0.830 2,7- dimethyl- 2-octanol 0.083212 123.1681 -120.2454 57.6528 298 15	2-octanol 0.090457 114.7054 -72.1325 20.7376 289.00 258.90 363.60 100.00 400.00 0.619 0.068 0.001 23 3 1.085 cyclopentanol 0.086191 121.4409 -2.8413 149.6110 324.90	3-octanol 0.093694 76.1936 -43.1838 18.3398 368.15 273.15 368.15 49.03 1176.80 0.415 0.046 0.037 29 -1 1.075 cyclohexanol 0.061342 100.7280 313.20	3-methyl- 1-heptanol 0.094500 108.1446 -58.6203 24.3655 323.15 273.15 368.15 49.03 1176.80 0.718 0.079 0.071 35 -1 1.075 1,2- ethanediol 0.095014 258.3450 -101.5158 12.7583 298.15	2-methyl- 3-heptanol 0.095988 85.2795 -14.2752 40.9261 368.15 273.15 368.15 49.03 1176.80 1.479 0.166 0.117 30 2 0.902 1,2- propanediol 0.098352 249.4084 -56.5748 -25.9646 273.15	5-methyl- 3-heptanol 0.076436 113.6320 -64.8075 14.5875 248.40 226.80 364.40 100.00 400.00 0.953 0.107 -0.040 33 -3 1.077 1,3- propanediol 0.096354 231.1928 -69.2349 323.15	6-methyl- 3-heptanol 0.092418 93.1421 -57.1193 12.3115 323.15 273.15 368.15 49.03 1176.80 0.777 0.083 0.067 33 1 0.975 1,2,3- propanetriol 0.114255 527.4930 -133.6162 4.4891 273.15	3-methyl- 4-heptanol 0.090744 92.7699 -63.2003 21.8650 323.15 273.15 368.15 49.03 1176.80 0.632 0.067 0.066 34 2 1.062 1.3- butanediol 0.115162 290.6718 -94.8613 -7.9105 273.15
c_{0} b_{0}/MPa $b_{1}/MPa\cdotK^{-1}$ $b_{2}/MPa\cdotK^{-2}$ T_{0}/K T_{min}/K T_{max}/K P_{min}/MPa $RMSD/kg\cdotm^{-3}$ $RMSD_{r}/\%$ $bias/kg\cdotm^{-3}$ N_{p} \pm s_{w} c_{0} b_{0}/MPa $b_{1}/MPa\cdotK^{-1}$ $b_{2}/MPa\cdotK^{-2}$ T_{0}/K	2,2- dimethyl- 1-butanol 0.066655 76.8570 -30.5164 290.00 264.80 290.00 10.00 130.00 0.320 0.037 -0.031 36 -6 0.830 2,7- dimethyl- 2-octanol 0.083212 123.1681 -120.2454 57.6528 298.15 298.15	2-octanol 0.090457 114.7054 -72.1325 20.7376 289.00 258.90 363.60 100.00 400.00 0.619 0.068 0.001 23 3 1.085 cyclopentanol 0.086191 121.4409 -2.8413 149.6110 324.90 273.30	3-octanol 0.093694 76.1936 -43.1838 18.3398 368.15 273.15 368.15 49.03 1176.80 0.415 0.046 0.037 29 -1 1.075 cyclohexanol 0.061342 100.7280 313.20 313.20	3-methyl- 1-heptanol 0.094500 108.1446 -58.6203 24.3655 323.15 273.15 368.15 49.03 1176.80 0.718 0.079 0.071 35 -1 1.075 1,2- ethanediol 0.095014 258.3450 -101.5158 12.7583 298.15 298.15	2-methyl- 3-heptanol 0.095988 85.2795 -14.2752 40.9261 368.15 273.15 368.15 49.03 1176.80 1.479 0.166 0.117 30 2 0.902 1,2- propanediol 0.098352 249.4084 -56.5748 -25.9646 273.15 273.15	5-methyl- 3-heptanol 0.076436 113.6320 -64.8075 14.5875 248.40 226.80 364.40 100.00 400.00 0.953 0.107 -0.040 33 -3 1.077 1,3- propanediol 0.096354 231.1928 -62.9969 -69.2349 323.15 273.15	6-methyl- 3-heptanol 0.092418 93.1421 -57.1193 12.3115 323.15 273.15 368.15 49.03 1176.80 0.777 0.083 0.067 33 1 0.975 1,2,3- propanetriol 0.114255 527.4930 -133.6162 4.4891 273.15 223.15	3-methyl- 4-heptanol 0.090744 92.7699 -63.2003 21.8650 323.15 273.15 368.15 49.03 1176.80 0.632 0.067 0.066 34 2 1.062 1.3- butanediol 0.115162 290.6718 -94.8613 -7.9105 273.15 233.15
	2,2- dimethyl- 1-butanol 0.066655 76.8570 -30.5164 290.00 264.80 290.00 10.00 130.00 0.320 0.037 -0.031 36 -6 0.830 2,7- dimethyl- 2-octanol 0.083212 123.1681 -120.2454 57.6528 298.15 298.15 353.15	2-octanol 0.090457 114.7054 -72.1325 20.7376 289.00 258.90 363.60 100.00 400.00 0.619 0.068 0.001 23 3 1.085 cyclopentanol 0.086191 121.4409 -2.8413 149.6110 324.90 273.30 324.90	3-octanol 0.093694 76.1936 -43.1838 18.3398 368.15 273.15 368.15 49.03 1176.80 0.415 0.046 0.037 29 -1 1.075 cyclohexanol 0.061342 100.7280 313.20 313.20 313.20	3-methyl- 1-heptanol 0.094500 108.1446 -58.6203 24.3655 323.15 273.15 368.15 49.03 1176.80 0.718 0.079 0.071 35 -1 1.075 1,2- ethanediol 0.095014 258.3450 -101.5158 12.7583 298.15 298.15 298.15 378.15	2-methyl- 3-heptanol 0.095988 85.2795 -14.2752 40.9261 368.15 273.15 368.15 49.03 1176.80 1.479 0.166 0.117 30 2 0.902 1,2- propanediol 0.098352 249.4084 -56.5748 -25.9646 273.15 368.15	5-methyl- 3-heptanol 0.076436 113.6320 -64.8075 14.5875 248.40 226.80 364.40 100.00 400.00 0.953 0.107 -0.040 33 -3 1.077 1,3- propanediol 0.096354 231.1928 -62.9969 -69.2349 323.15 273.15 368.15	6-methyl- 3-heptanol 0.092418 93.1421 -57.1193 12.3115 323.15 273.15 368.15 49.03 1176.80 0.777 0.083 0.067 33 1 0.975 1,2,3- propanetriol 0.114255 527.4930 -133.6162 4.4891 273.15 223.15 368.15	3-methyl- 4-heptanol 0.090744 92.7699 -63.2003 21.8650 323.15 273.15 368.15 49.03 1176.80 0.632 0.067 0.066 34 2 1.062 1.3- butanediol 0.115162 290.6718 -94.8613 -7.9105 273.15 233.15 303.15
c_{0} b_{0}/MPa $b_{1}/MPa\cdotK^{-1}$ $b_{2}/MPa\cdotK^{-2}$ T_{0}/K T_{min}/K T_{max}/K P_{min}/MPa $RMSD/kg\cdotm^{-3}$ $RMSD_r/\%$ bias/kg·m^{-3} N_{p} \pm s_{w} c_{0} b_{0}/MPa $b_{1}/MPa\cdotK^{-1}$ $b_{2}/MPa\cdotK^{-1}$ $b_{2}/MPa\cdotK^{-2}$ T_{0}/K T_{min}/K T_{max}/K P_{min}/MPa	2,2- dimethyl- 1-butanol 0.066655 76.8570 -30.5164 290.00 264.80 290.00 10.00 130.00 0.320 0.037 -0.031 36 -6 0.830 2,7- dimethyl- 2-octanol 0.083212 123.1681 -120.2454 57.6528 298.15 298.15 353.15 19.61	2-octanol 0.090457 114.7054 -72.1325 20.7376 289.00 258.90 363.60 100.00 400.00 0.619 0.068 0.001 23 3 1.085 cyclopentanol 0.086191 121.4409 -2.8413 149.6110 324.90 273.30 324.90 10.00	3-octanol 0.093694 76.1936 -43.1838 18.3398 368.15 273.15 368.15 49.03 1176.80 0.415 0.046 0.037 29 -1 1.075 cyclohexanol 0.061342 100.7280 313.20 313.20 313.20 10.00	3-methyl- 1-heptanol 0.094500 108.1446 -58.6203 24.3655 323.15 273.15 368.15 49.03 1176.80 0.718 0.079 0.071 35 -1 1.075 1.2- ethanediol 0.095014 258.3450 -101.5158 12.7583 298.15 298.15 378.15 0.69	2-methyl- 3-heptanol 0.095988 85.2795 -14.2752 40.9261 368.15 273.15 368.15 49.03 1176.80 1.479 0.166 0.117 30 2 0.902 1,2- propanediol 0.098352 249.4084 -56.5748 -25.9646 273.15 368.15 49.03	5-methyl- 3-heptanol 0.076436 113.6320 -64.8075 14.5875 248.40 226.80 364.40 100.00 400.00 0.953 0.107 -0.040 33 -3 1.077 1,3- propanediol 0.096354 231.1928 -62.9969 -69.2349 323.15 273.15 368.15 20.00	6-methyl- 3-heptanol 0.092418 93.1421 -57.1193 12.3115 323.15 273.15 368.15 49.03 1176.80 0.777 0.083 0.067 33 1 0.975 1,2,3- propanetriol 0.114255 527.4930 -133.6162 4.4891 273.15 223.15 368.15 20.00	3-methyl- 4-heptanol 0.090744 92.7699 -63.2003 21.8650 323.15 273.15 368.15 49.03 1176.80 0.632 0.067 0.066 34 2 1.062 1.3- butanediol 0.115162 290.6718 -94.8613 -7.9105 273.15 303.15 49.03
	2,2- dimethyl- 1-butanol 0.066655 76.8570 -30.5164 290.00 264.80 290.00 10.00 130.00 0.320 0.037 -0.031 36 -6 0.830 2,7- dimethyl- 2-octanol 0.083212 123.1681 -120.2454 57.6528 298.15 353.15 19.61 196.13	2-octanol 0.090457 114.7054 -72.1325 20.7376 289.00 258.90 363.60 100.00 400.00 0.619 0.068 0.001 23 3 1.085 cyclopentanol 0.086191 121.4409 -2.8413 149.6110 324.90 273.30 324.90 10.00 230.00	3-octanol 0.093694 76.1936 -43.1838 18.3398 368.15 273.15 368.15 49.03 1176.80 0.415 0.046 0.037 29 -1 1.075 cyclohexanol 0.061342 100.7280 313.20 313.20 313.20 10.00 30.00	3-methyl- 1-heptanol 0.094500 108.1446 -58.6203 24.3655 323.15 273.15 368.15 49.03 1176.80 0.718 0.079 0.071 35 -1 1.075 1,2- ethanediol 0.095014 258.3450 -101.5158 12.7583 298.15 378.15 0.69 200.00	2-methyl- 3-heptanol 0.095988 85.2795 -14.2752 40.9261 368.15 273.15 368.15 49.03 1176.80 1.479 0.166 0.117 30 2 0.902 1,2- propanediol 0.098352 249.4084 -56.5748 -25.9646 273.15 368.15 49.03 588.40	5-methyl- 3-heptanol 0.076436 113.6320 -64.8075 14.5875 248.40 226.80 364.40 100.00 0.953 0.107 -0.040 33 -3 1.077 1,3- propanediol 0.096354 231.1928 -62.9969 -69.2349 323.15 273.15 368.15 20.00 1176.80	6-methyl- 3-heptanol 0.092418 93.1421 -57.1193 12.3115 323.15 273.15 368.15 49.03 1176.80 0.777 0.083 0.067 33 1 0.975 1,2,3- propanetriol 0.114255 527.4930 -133.6162 4.4891 273.15 223.15 368.15 20.00 686.47	3-methyl- 4-heptanol 0.090744 92.7699 -63.2003 21.8650 323.15 273.15 368.15 49.03 1176.80 0.632 0.066 34 2 1.062 1,3- butanediol 0.115162 290.6718 -94.8613 -7.9105 273.15 233.15 303.15 49.03 274.59
c_0 b_0/MPa $b_1/MPa\cdot K^{-1}$ $b_2/MPa\cdot K^{-2}$ T_0/K T_{min}/K T_{max}/K P_{min}/MPa P_{max}/MPa $RMSD/kg\cdot m^{-3}$ N_p \pm s_w c_0 $b_0/MPa \cdot K^{-1}$ $b_2/MPa\cdot K^{-2}$ T_0/K T_{min}/K T_{max}/K P_{max}/MPa P_{max}/MPa P_{max}/MPa $RMSD/kg\cdot m^{-3}$	2,2- dimethyl- 1-butanol 0.066655 76.8570 - 30.5164 290.00 264.80 290.00 10.00 130.00 0.320 0.037 -0.031 36 -6 0.830 2,7- dimethyl- 2-octanol 0.083212 123.1681 -120.2454 57.6528 298.15 298.15 353.15 19.61 196.13 0.448	2-octanol 0.090457 114.7054 -72.1325 20.7376 289.00 258.90 363.60 100.00 400.00 0.619 0.068 0.001 23 3 1.085 cyclopentanol 0.086191 121.4409 -2.8413 149.6110 324.90 273.30 324.90 10.00 230.00 0.581	3-octanol 0.093694 76.1936 -43.1838 18.3398 368.15 273.15 368.15 49.03 1176.80 0.046 0.037 29 -1 1.075 cyclohexanol 0.061342 100.7280 313.20 312 312 312	3-methyl- 1-heptanol 0.094500 108.1446 -58.6203 24.3655 323.15 273.15 368.15 49.03 1176.80 0.718 0.079 0.071 35 -1 1.075 1,2- ethanediol 0.095014 258.3450 -101.5158 12.7583 298.15 378.15 0.69 200.00 0.344	2-methyl- 3-heptanol 0.095988 85.2795 -14.2752 40.9261 368.15 273.15 368.15 49.03 1176.80 1.479 0.166 0.117 30 2 0.902 1,2- propanediol 0.098352 249.4084 -56.5748 -25.9646 273.15 368.15 49.03 588.40 0.554	5-methyl- 3-heptanol 0.076436 113.6320 -64.8075 14.5875 248.40 226.80 364.40 100.00 0.953 0.107 -0.040 33 -3 1.077 1,3- propanediol 0.096354 231.1928 -62.9969 -69.2349 323.15 273.15 368.15 20.00 1176.80 0.735	6-methyl- 3-heptanol 0.092418 93.1421 -57.1193 12.3115 323.15 273.15 368.15 49.03 1176.80 0.777 0.083 0.067 33 1 0.975 1,2,3- propanetriol 0.114255 527.4930 -133.6162 4.4891 273.15 223.15 368.15 20.00 686.47 0.796	3-methyl- 4-heptanol 0.090744 92.7699 -63.2003 21.8650 323.15 273.15 368.15 49.03 1176.80 0.632 0.066 34 2 1.062 1,3- butanediol 0.115162 290.6718 -94.8613 -7.9105 273.15 233.15 303.15 49.03 274.59 0.067
c_0 b_0/MPa $b_1/MPa \cdot K^{-1}$ $b_2/MPa \cdot K^{-2}$ T_0/K T_{min}/K T_{max}/K P_{max}/MPa $RMSD/kg \cdot m^{-3}$ N_p \pm s_w s_w c_0 $b_0/MPa \cdot K^{-1}$ $b_2/MPa \cdot K^{-1}$ $b_2/MPa \cdot K^{-2}$ T_0/K T_{min}/K T_{max}/K P_{min}/MPa $RMSD/kg \cdot m^{-3}$ $RMSD/kg \cdot m^{-3}$ $RMSD/kg \cdot m^{-3}$	$\begin{array}{r} 2,2-\\ dimethyl-\\ 1-butanol\\ 0.066655\\ 76.8570\\ -30.5164\\ 290.00\\ 264.80\\ 290.00\\ 10.00\\ 130.00\\ 0.320\\ 0.037\\ -0.031\\ 36\\ -6\\ 0.830\\ \hline 2,7-\\ dimethyl-\\ 2-octanol\\ 0.083212\\ 123.1681\\ -120.2454\\ 57.6528\\ 298.15\\ 298.15\\ 353.15\\ 19.61\\ 196.13\\ 0.448\\ 0.054\\ \end{array}$	2-octanol 0.090457 114.7054 -72.1325 20.7376 289.00 258.90 363.60 100.00 400.00 0.619 0.068 0.001 23 3 1.085 cyclopentanol 0.086191 121.4409 -2.8413 149.6110 324.90 273.30 324.90 10.00 230.00 0.581 0.060	3-octanol 0.093694 76.1936 -43.1838 18.3398 368.15 273.15 368.15 49.03 1176.80 0.415 0.046 0.037 29 -1 1.075 cyclohexanol 0.061342 100.7280 313.20 313.20 313.20 313.20 10.00 30.00 0.120 0.013	3-methyl- 1-heptanol 0.094500 108.1446 -58.6203 24.3655 323.15 273.15 368.15 49.03 1176.80 0.718 0.079 0.071 35 -1 1.075 1.2- ethanediol 0.095014 258.3450 -101.5158 12.7583 298.15 298.15 378.15 0.69 200.00 0.344 0.031	2-methyl- 3-heptanol 0.095988 85.2795 -14.2752 40.9261 368.15 273.15 368.15 49.03 1176.80 1.479 0.166 0.117 30 2 0.902 1,2- propanediol 0.098352 249.4084 -56.5748 -25.9646 273.15 368.15 49.03 588.40 0.554 0.051	5-methyl- 3-heptanol 0.076436 113.6320 -64.8075 14.5875 248.40 226.80 364.40 100.00 0.953 0.107 -0.040 33 -3 1.077 1,3- propanediol 0.096354 231.1928 -62.9969 -69.2349 323.15 273.15 368.15 20.00 1176.80 0.735 0.063	6-methyl- 3-heptanol 0.092418 93.1421 -57.1193 12.3115 323.15 273.15 368.15 49.03 1176.80 0.777 0.083 0.067 33 1 0.975 1,2,3- propanetriol 0.114255 527.4930 -133.6162 4.4891 273.15 223.15 368.15 20.00 686.47 0.796 0.061	3-methyl- 4-heptanol 0.090744 92.7699 -63.2003 21.8650 323.15 273.15 368.15 49.03 1176.80 0.662 0.066 34 2 1.062 1.3- butanediol 0.115162 290.6718 -94.8613 -7.9105 273.15 233.15 303.15 49.03 274.59 0.067 0.006
c_0 b_0/MPa $b_1/MPa \cdot K^{-1}$ $b_2/MPa \cdot K^{-2}$ T_0/K T_{min}/K T_{max}/K P_{max}/MPa $RMSD/kg \cdot m^{-3}$ N_p \pm s_w c_0 $b_0/MPa \cdot K^{-1}$ $b_2/MPa \cdot K^{-2}$ T_0/K T_{min}/K T_{max}/K P_{min}/MPa $RMSD/kg \cdot m^{-3}$ $RMSD_r/%$ bias/kg \cdot m^{-3}	$\begin{array}{r} 2,2-\\ dimethyl-\\ 1-butanol\\ 0.066655\\ 76.8570\\ -30.5164\\ 290.00\\ 264.80\\ 290.00\\ 10.00\\ 130.00\\ 0.320\\ 0.037\\ -0.031\\ 36\\ -6\\ 0.830\\ \hline 2,7-\\ dimethyl-\\ 2-octanol\\ 0.083212\\ 123.1681\\ -120.2454\\ 57.6528\\ 298.15\\ 298.15\\ 353.15\\ 19.61\\ 196.13\\ 0.448\\ 0.054\\ -0.062\\ \hline \end{array}$	2-octanol 0.090457 114.7054 -72.1325 20.7376 289.00 258.90 363.60 100.00 400.00 0.619 0.068 0.001 23 3 1.085 cyclopentanol 0.086191 121.4409 -2.8413 149.6110 324.90 273.30 324.90 10.00 230.00 0.581 0.060 -0.019	3-octanol 0.093694 76.1936 -43.1838 18.3398 368.15 273.15 368.15 49.03 1176.80 0.415 0.046 0.037 29 -1 1.075 cyclohexanol 0.061342 100.7280 313.20 313.20 313.20 313.20 313.20 10.00 30.00 0.120 0.013 -0.014	3-methyl- 1-heptanol 0.094500 108.1446 -58.6203 24.3655 323.15 273.15 368.15 49.03 1176.80 0.718 0.079 0.071 35 -1 1.075 1.2- ethanediol 0.095014 258.3450 -101.5158 12.7583 298.15 298.15 378.15 0.69 200.00 0.344 0.031 0.027	2-methyl- 3-heptanol 0.095988 85.2795 -14.2752 40.9261 368.15 273.15 368.15 49.03 1176.80 1.479 0.166 0.117 30 2 0.902 1.2- propanediol 0.098352 249.4084 -56.5748 -25.9646 273.15 368.15 49.03 588.40 0.554 0.051 0.043	5-methyl- 3-heptanol 0.076436 113.6320 -64.8075 14.5875 248.40 226.80 364.40 100.00 400.00 0.953 0.107 -0.040 33 -3 1.077 1,3- propanediol 0.096354 231.1928 -62.9969 -69.2349 323.15 273.15 368.15 20.00 1176.80 0.735 0.063 0.052	6-methyl- 3-heptanol 0.092418 93.1421 -57.1193 12.3115 323.15 273.15 368.15 49.03 1176.80 0.777 0.083 0.067 33 1 0.975 1,2,3- propanetriol 0.114255 527.4930 -133.6162 4.4891 273.15 223.15 368.15 20.00 686.47 0.796 0.061 -0.253	3-methyl- 4-heptanol 0.090744 92.7699 -63.2003 21.8650 323.15 273.15 368.15 49.03 1176.80 0.662 0.066 34 2 1.062 1.3- butanediol 0.115162 290.6718 -94.8613 -7.9105 273.15 233.15 303.15 49.03 274.59 0.067 0.006 -0.001
C_0 b_0/MPa $b_1/MPa \cdot K^{-1}$ $b_2/MPa \cdot K^{-2}$ T_0/K T_{min}/K T_{max}/K P_{max}/MPa $RMSD/kg \cdot m^{-3}$ N_p \pm s_w S_w	2,2- dimethyl- 1-butanol 0.066655 76.8570 -30.5164 290.00 264.80 290.00 10.00 130.00 0.320 0.037 -0.031 36 -6 0.830 2,7- dimethyl- 2-octanol 0.083212 123.1681 -120.2454 57.6528 298.15 298.15 353.15 19.61 196.13 0.448 0.054 -0.062 40	2-octanol 0.090457 114.7054 -72.1325 20.7376 289.00 258.90 363.60 100.00 400.00 0.619 0.068 0.001 23 3 1.085 cyclopentanol 0.086191 121.4409 -2.8413 149.6110 324.90 273.30 324.90 10.00 230.00 0.581 0.060 -0.019 68	3-octanol 0.093694 76.1936 -43.1838 18.3398 368.15 273.15 368.15 49.03 1176.80 0.415 0.046 0.037 29 -1 1.075 cyclohexanol 0.061342 100.7280 313.20 313.20 313.20 313.20 10.00 30.00 0.120 0.013 -0.014 3	3-methyl- 1-heptanol 0.094500 108.1446 -58.6203 24.3655 323.15 273.15 368.15 49.03 1176.80 0.718 0.079 0.071 35 -1 1.075 1.075 1.2- ethanediol 0.095014 258.3450 -101.5158 12.7583 298.15 298.15 378.15 0.69 200.00 0.344 0.027 41	2-methyl- 3-heptanol 0.095988 85.2795 -14.2752 40.9261 368.15 273.15 368.15 49.03 1176.80 1.479 0.166 0.117 30 2 0.902 1,2- propanediol 0.098352 249.4084 -56.5748 -25.9646 273.15 368.15 49.03 588.40 0.554 0.043 24	5-methyl- 3-heptanol 0.076436 113.6320 -64.8075 14.5875 248.40 226.80 364.40 100.00 400.00 0.953 0.107 -0.040 33 -3 1.077 1,3- propanediol 0.096354 231.1928 -62.9969 -69.2349 323.15 273.15 368.15 20.00 1176.80 0.735 0.063 0.052 41	6-methyl- 3-heptanol 0.092418 93.1421 -57.1193 12.3115 323.15 273.15 368.15 49.03 1176.80 0.777 0.083 0.067 33 1 0.975 1,2,3- propanetriol 0.114255 527.4930 -133.6162 4.4891 273.15 223.15 368.15 20.00 686.47 0.796 0.061 -0.253 133	3-methyl- 4-heptanol 0.090744 92.7699 -63.2003 21.8650 323.15 273.15 368.15 49.03 1176.80 0.632 0.067 0.066 34 2 1.062 1.3- butanediol 0.115162 290.6718 -94.8613 -7.9105 273.15 233.15 303.15 49.03 274.59 0.067 0.006 -0.001 56
$ \begin{array}{c} c_{0} \\ b_{0}/MPa \\ b_{1}/MPa \cdot K^{-1} \\ b_{2}/MPa \cdot K^{-2} \\ T_{0}/K \\ T_{min}/K \\ T_{max}/K \\ P_{min}/MPa \\ P_{max}/MPa \\ RMSD/kg \cdot m^{-3} \\ RMSD_{r}\% \\ bias/kg \cdot m^{-3} \\ N_{p} \\ \pm \\ s_{w} \\ \end{array} $	$\begin{array}{r} 2,2-\\ dimethyl-\\ 1-butanol\\ 0.066655\\ 76.8570\\ -30.5164\\ 290.00\\ 264.80\\ 290.00\\ 10.00\\ 130.00\\ 0.320\\ 0.037\\ -0.031\\ 36\\ -6\\ 0.830\\ \hline 2,7-\\ dimethyl-\\ 2-octanol\\ 0.083212\\ 123.1681\\ -120.2454\\ 57.6528\\ 298.15\\ 298.15\\ 298.15\\ 298.15\\ 353.15\\ 19.61\\ 196.13\\ 0.448\\ 0.054\\ -0.062\\ 40\\ 0\\ \hline \end{array}$	2-octanol 0.090457 114.7054 -72.1325 20.7376 289.00 258.90 363.60 100.00 400.00 0.619 0.068 0.001 23 3 1.085 cyclopentanol 0.086191 121.4409 -2.8413 149.6110 324.90 273.30 324.90 10.00 0.581 0.060 -0.019 68 4	3-octanol 0.093694 76.1936 -43.1838 18.3398 368.15 273.15 368.15 49.03 1176.80 0.415 0.046 0.037 29 -1 1.075 cyclohexanol 0.061342 100.7280 313.20 313.20 313.20 313.20 10.00 30.00 0.120 0.014 3 -1	3-methyl- 1-heptanol 0.094500 108.1446 -58.6203 24.3655 323.15 273.15 368.15 49.03 1176.80 0.718 0.079 0.071 35 -1 1.075 1.2- ethanediol 0.095014 258.3450 -101.5158 12.7583 298.15 298.15 378.15 0.69 200.00 0.344 0.031 0.027 41 9	2-methyl- 3-heptanol 0.095988 85.2795 -14.2752 40.9261 368.15 273.15 368.15 49.03 1176.80 1.479 0.166 0.117 30 2 0.902 1,2- propanediol 0.098352 249.4084 -56.5748 -25.9646 273.15 273.15 368.15 49.03 588.40 0.554 0.051 0.043 24 -4	5-methyl- 3-heptanol 0.076436 113.6320 -64.8075 14.5875 248.40 226.80 364.40 100.00 400.00 0.953 0.107 -0.040 33 -3 1.077 1,3- propanediol 0.096354 231.1928 -62.9969 -69.2349 323.15 273.15 368.15 20.00 1176.80 0.735 0.063 0.052 41 3	6-methyl- 3-heptanol 0.092418 93.1421 -57.1193 12.3115 323.15 273.15 368.15 49.03 1176.80 0.777 0.083 0.067 33 1 0.975 1,2,3- propanetriol 0.114255 527.4930 -133.6162 4.4891 273.15 223.15 368.15 20.00 686.47 0.796 0.061 -0.253 133 -51	3-methyl- 4-heptanol 0.090744 92.7699 -63.2003 21.8650 323.15 273.15 368.15 49.03 1176.80 0.632 0.067 0.066 34 2 1.062 1.3- butanediol 0.115162 290.6718 -94.8613 -7.9105 273.15 233.15 303.15 49.03 274.59 0.067 0.006 -0.001 56 -2

1,5- pentanediol	2-methyl- 2,4-pentanediol	3-oxa- 1-butanol	3-oxa- 1-heptanol	3-oxa- 1,5-pentanediol	3,6-dioxa- 1-octanol	3-methyl- 1-hydroxy benzene	2-methoxy- 1-hydroxy benzene
0.134992	0.107761	0.095161	0.091296	0.100758	0.157534	0.075527	0.085560
						0.007078	
360.0408	185.5936	133.7094	118.4045	255.9953	274.4981	126.4379	185.5742
-118.6652	-79.6870	-78.0617	-73.4625	-82.7560	-138.0063	-53.8417	
	-6.6494	8.2277	19.5546	36.6852	15.7517	6.2102	
273.15	273.15	298.15	298.15	323.15	298.15	323.15	273.15
253.15	223.15	298.15	288.15	273.15	298.15	298.15	273.15
308.15	303.15	343.15	348.15	368.15	448.15	503.15	273.15
49.03	49.03	10.00	2.55	49.03	0.41	0.69	49.03
274.59	274.59	300.00	380.68	1176.80	25.25	400.00	490.33
0.045	0.115	0.041	0.289	0.749	0.188	0.230	0.142
0.004	0.011	0.004	0.031	0.062	0.019	0.023	0.012
-0.001	-0.005	0.001	0.080	0.019	-0.012	-0.014	-0.016
45	63	52	138	33	62	225	7
-1	-7	0	28	9	-2	15	-1
1.021	1.028	0.969	0.983	0.979	1.029	1.014	0.980
	1,5- pentanediol 0.134992 360.0408 -118.6652 273.15 253.15 308.15 49.03 274.59 0.045 0.004 -0.001 45 -1 1.021	1,5- 2-methyl- pentanediol 2,4-pentanediol 0.134992 0.107761 360.0408 185.5936 -118.6652 -79.6870 -6.6494 273.15 253.15 223.15 308.15 303.15 49.03 49.03 274.59 274.59 0.045 0.115 0.004 0.011 -0.001 -0.005 45 63 -1 -7 1.021 1.028	1,5- pentanediol2-methyl- 2,4-pentanediol3-oxa- 1-butanol0.1349920.1077610.095161360.0408185.5936133.7094-118.6652-79.6870-78.0617-6.64948.2277273.15273.15298.15253.15223.15298.15308.15303.15343.1549.0349.0310.00274.59274.59300.000.0450.1150.0410.0040.0110.004-0.0050.00145456352-1-701.0211.0280.969	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,5- pentanediol2-methyl- 2,4-pentanediol3-oxa- 1-butanol3-oxa- 1-heptanol3-oxa- 1,5-pentanediol3,6-dioxa- 1-octanol3-methyl- 1-hydroxy benzene0.1349920.1077610.0951610.0912960.1007580.1575340.075527 0.007078360.0408185.5936133.7094118.4045255.9953274.4981126.4379 -118.6652-118.6652-79.6870-78.0617-73.4625-82.7560-138.0063-53.8417 -6.6494-6.64948.227719.554636.685215.75176.2102 273.15273.15273.15298.15288.15273.15298.15233.15253.15223.15298.15288.15273.15298.15298.15308.15303.15343.15348.15368.15448.15503.1549.0310.002.5549.030.410.69274.59274.59300.00380.681176.8025.25400.000.0450.1150.0410.2890.7490.1880.2300.0040.0110.0040.0310.0620.0190.023-0.001-0.0050.0010.0800.019-0.012-0.0144563521383362225-1-70289-2151.0211.0280.9690.9830.9791.0291.014

^{*a*} The low limit of pressure ranges is 0.1 MPa or a saturation pressure (whichever is higher) for all fits; P_{\min} is the lowest pressure in a particular set of compressed liquid density data retained for the correlation.

check of aconsistency of the fits with independent data. The literature values of isothermal compressibility used for the comparison in Table 6 are the values obtained mostly from speed-of-sound measurements and were either taken directly from the papers or calculated from the equation

$$\beta_T = \frac{1}{\rho} \left[\frac{1}{u^2} + \frac{TM\alpha_P^{\ 2}}{c_P} \right]$$
(11)

where M, u, α_P , and c_P are molar mass, speed of sound, isobaric thermal expansivity ($\alpha_P = (1/V)(\partial V/\partial T)_P = -(1/\rho)(\partial \rho/\partial T)_P$), and molar isobaric heat capacity, respectively. Values of input quantities in eq 11 were taken from different sources cited in Table 6.

In the following, a brief commentary is given for each class of substances.

Higher 1-Alkanols (C₁₁, C₁₂, C₁₄, C₁₆). One data set was available for all but one 1-alkanol. The fit of data reported for 1-undecanol by Naziev et al. [90-naz/sha] yields large positive deviations from directly measured isothermal compressibilities [79-dia/tar] (about 13% in an average, Table 6). This indicates that values calculated at high temperatures from the fit for 1-dodecanol might be also unreliable; the values by [90-naz/sha] at the temperature range where $P-\rho-T$ data from other sources ([89-mat/ mak], [93-gar/ban]) were available were rejected and the final fit (Table 3) based mainly on the retained values ([89mat/mak], [93-gar/ban]) in the close-to-ambient temperature range yields good agreement with isothermal compressibilities [79-dia/tar] (average deviation -1.1%, see Table 6). Two fits of densities $\rho(T, P_{ref})$ are presented in Appendix II for 1-dodecanol; the fit of data by 90-naz/sha gives significantly lower values (by 1.0 kg m⁻³ at T =298.15 K and 3.9 kg·m⁻³ at T = 498.15 K) than that of data by 76-hal/ell, while the average deviations of reference densities $\rho(T, P_{ref})$ reported by 89-mat/mak and 93-gar/ban from smoothed values [76-hal/ell] are 0.27 kg·m⁻³ and 0.28 kg·m⁻³ (both positive), respectively. Good agreement of $P-\rho-T$ data by 89-mat/mak with literature values of isothermal compressibility indicates that also $P-\rho-T$ data for 1-tetradecanol and 1-hexadecanol from this source might be of good reliability.

Secondary, Tertiary, and Branched Alkanols. The agreement of isothermal compressibilities calculated from the fit in Table 3 for 2-propanol is quite reasonable at

temperatures below 313.15 K, where negative deviations less than 5% from the literature data are observed (Table 6). It should be noted that sound speed values reported by Islam and Quadri [87-isl/qua] are likely to be too low, yielding compressibilities larger than those from other sources. At higher temperatures where the fit is based primarily on $P-\rho-T$ data reported in 80-gol/vas and 87-kub/tan the deviations reach large values (up to -23%). A tentative fit of data reported by 87-kub/tan yielded values of isothermal compressibility lower (by 1.2% on average) than those calculated from the fit in Table 3.

The mutual agreement of the retained data sets for 2-butanol and 2-methyl-1-propanol (isobutanol) is below 0.1%, and also the deviations of calculated isothermal compressibilities from the literature values (Table 6) are satisfactory, being below 5% (2-butanol) and 3% (2-methyl-1-propanol).

Values reported by Wappmann et al. [95-wap/kar] for 2-pentanol and 3-pentanol are consistent with the lowpressure F-type values obtained by Sahli et al. [76-sah/ gag] by centrifugation. The authors 95-wap/kar fitted their data using the Tait equation using the lowest experimental pressure 10 MPa as a reference line and found a maximum deviation of 0.5% from the fits. In our fits we have employed the reference densities extrapolated to P = 0.1MPa from their fits (see also Appendix I). The deviations of those extrapolated values from densities reported in 66trc are, however, large, being on average 1.3 kg·m⁻³ (2pentanol, negative) and 1.0 kg \cdot m⁻³ (3-pentanol, positive). When we fit eq 1, it was observed that the compressedliquid density values for temperatures T = 342.9 K (2pentanol) and T = 343.1 K (3-pentanol) showed large negative deviations from the fits of values for other isotherms (10 kg·m⁻³ and 2 kg·m⁻³, respectively). After the values for these two isotherms were rejected (in the case of 2-pentanol for pressures above 60 MPa), the fits representing the data by 95-wap/kar with average deviations below 0.04% were obtained (see Table 4). The comparison of isothermal compressibilities presented in Table 6 is not of a high significance since the F-type values from 76-sah/gag covering the pressure range below that of data from 95-wap/kar were included in the correlated data set.

In the database there was only one data set per substance available for 2-methyl-1-butanol, 2-methyl-2-bu-

422 Journal of Chemical and Engineering Data, Vol. 42, No. 3, 1997

Figure 1. Temperature and pressure coordinates of data points retained in the correlations for the fits in Table 3 where T-P areas of retained data points are not rectangular.

Table 4. Statistical Characteristics of Individual Data Sets for the Fits in Table 3: Temperature and Pressure Ranges Taken into the Correlations, T_{min} , T_{max} , P_{min} , and P_{max} , Absolute, RMSD, and Relative, RMSD_r, Root Mean Square Deviations, Biases, bias, Number of Data Points, N_p , \pm , and Origin of the Reference Density Values Used in the Correlations, RD^a

ref	T_{\min}/K	$T_{\rm max}/{\rm K}$	P _{min} /MPa	P _{max} /MPa	$RMSD/kg \cdot m^{-3}$	RMSD _r /%	bias/kg·m ⁻³	$N_{\rm p}$	±	RD ^a
				1-U	Jndecanol					
90-naz/sha	308.15	598.15	5.0	50.0	0.814	0.116	-0.098	75	-11	0
				1-E	Dodecanol					
89-mat/mak	323.15	348.15	0.9	40.0	0.084	0.010	0.056	21	11	0
90-naz/sha	298.15	598.15	5.0	50.0	1.038	0.146	0.398	60	32	0
93-gar/ban	323.15	373.15	1.0	10.0	0.154	0.019	-0.069	50	-12	0
				1-Te	tradecanol				_	
89-mat/mak	323.15	348.15	0.6	39.7	0.091	0.011	-0.003	22	-2	0
				1-He	exadecanol					
89-mat/mak	348.15	348.15	0.3	40.1	0.077	0.009	-0.002	10	0	0
				2-Propanol ((Isopropyl Alcohol)					
31-bri				-	2.582	0.304	-2.159	8	-8	(o)
42-bri					0 500	0.404	0.407	0	0	е
56-stu					3.506	0.421	-3.137	8	-8	0
50-stu 63-gol/bag					4.065	0.469	-4.065	56	-18	0
63-gol/bag					8.134	1.162	-5.151	36	-36	(o)
71-ham/smi					2.735	0.327	-2.735	1	-1	0
71-tse/sti								0	0	e
76-sah/gag	293.15	298.15	1.0	7.0	0.007	0.001	0.000	14	0	0
77-mor/inu	298.15	298.15	10.1	141.9	0.262	0.031	0.060	9	3	0
77-mor/mor	298.15	298.15	101.3	101.3	0.186	0.022	0.186	1 91	12	0
79-gol/yas					3.280	0.482	-0.252	43	21	e
79-zol/gol	273.15	273.15	1.1	49.1	0.539	0.066	0.516	11	11	e
80-gol/vas	300.00	400.00	1.0	50.0	0.607	0.080	0.369	20	12	e
80-rae/fin					4.153	0.504	-1.434	25	-5	e
87-kub/tan	298.15	348.15	17.8	173.9	0.369	0.045	-0.182	30	-10	0
				2-Butanol (sec-Butyl Alcohol)					
76-sah/gag	293.15	298.15	1.0	7.0	0.039	0.005	0.037	14	14	0
87-kub/tan	283.15	348.15	15.4	206.5	0.611	0.071	0.477	48	32	0
92-uos/kit	298.15	298.15	50.0	200.0	0.279	0.032	-0.244	4	-4	0
			2-	-Methyl-1-prop	anol (Isobutyl Alco	hol)				
63-gol/bag					2.521	0.326	2.090	33	29	e
63-gol/bag	909 15	202 15	1.0	7.0	2.240	0.284	0.528	30	6	(0)
70-san/gag 79-yas/gol	293.15	296.15	1.0	7.0 79.1	0.012	0.002	0.002	14	23	0
79-zol/gol	201.00	570.52	1.1	40.1	0.700	0.050	0.005	0	0	e
80-gol/vas	300.00	350.00	1.0	50.0	0.769	0.098	0.722	22	22	e
87-Kub/tan	283.15	348.15	15.8	206.5	0.265	0.031	-0.051	48	-6	0
			2-1	Methyl-2-propa	anol (<i>tert</i> -Butyl Alc	ohol)				
87-kub/tan	323.15	348.15	6.7	95.7	0.121	0.015	0.009	21	-1	0
				2-1	Pentanol					
76-sah/gag	293.15	298.15	1.0	7.0	0.186	0.023	-0.162	14	-14	0
95-wap/kar	234.00	373.40	10.0	200.0	0.340	0.039	0.031	56	10	\mathbf{e}^{c}
				3-	Pentanol					
76-sah/gag	293.15	298.15	1.0	7.0	0.135	0.016	-0.116	14	-14	0
95-wap/kar	233.60	373.40	10.0	200.0	0.295	0.035	0.089	49	11	\mathbf{e}^{c}
				2-Metł	nvl-1-butanol					
76-sah/gag	293.15	298.15	1.0	7.0	0.004	0.000	0.001	14	2	0
0.0			3	R-Methyl-1-hut:	anol (Isoamyl Alcol	nol)				
76-sah/gag	293.15	298.15	1.0	7.0	0.032	0.004	0.019	14	4	0
81-gol/vas	273.15	386.90	1.1	49.1	0.795	0.102	-0.278	21	-7	e
0				2-Meth	nvl-2-butanol					
76-sah/gag	293.15	298.15	1.0	7.0	0.003	0.000	0.000	14	0	0
				2 Moth	avl 9 hutanal				-	-
76-sah/gag	293 15	298 15	1.0	7 0	0 002	0.000	0.000	14	2	0
10-Sall/gag	200.10	200.10	1.0	7.0	0.002	0.000	0.000	17	~	U
70 ash/rer	902.15	909 15	1.0	2-Meth	yl-2-pentanol	0.001	0.000	14	0	
76-san/gag	293.15	298.15	1.0	7.0	0.004	0.001	0.000	14	-2	0
	000 4 5	000.45	50.0	4-Meth	yl-2-pentanol	0.000	0.004			
92-uos/kit	298.15	298.15	50.0	200.0	0.250	0.029	0.004	4	2	0
				2,2-Dime	ethyl-1-butanol					
91-ede/bar	264.80	290.00	10.0	130.0	0.320	0.037	-0.031	36	-6	0
				2-	-Octanol					
68-joh/dan	258.90	363.60	100.0	400.0	0.619	0.068	0.001	23	3	0
				3-	Octanol					
33-bri	273.15	368.15	49.0	1176.8	0.415	0.046	0.037	29	-1	0
68-joh/dan ^b					6.313	0.688	-5.785	26	-6	0

ref	T _{min} /K	$T_{\rm max}/{ m K}$	P _{min} /MPa	P _{max} /MPa	RMSD/kg⋅m ⁻³	RMSD _r /%	bias/kg·m ⁻³	Np	±	RD ^a
_				3-Meth	yl-1-heptanol					
33-bri	273.15	368.15	49.0	1176.8	0.718	0.079	0.071	35	-1	0
	070 45	000 4 5	10.0	2-Meth	yl-3-heptanol	0.400	0.447		0	
33-bri 68 joh/don ^b	273.15	368.15	49.0	1176.8	1.479	0.166	0.117	30	2	0
08-J011/ua11*					5.241	0.374	-2.370	37	-11	0
68-ioh/dan	226 80	364 40	100.0	5-Metr 400.0	iyl-3-heptanol	0 107	-0.040	33	-3	0
00-j01/dali	220.00	304.40	100.0	400.0		0.107	0.040	55	5	U
33-hri	273 15	368 15	49.0	6-Metr	0 777	0.083	0.067	33	1	0
00 011	270.10	000.10	10.0	2 Moth	wl 4 hontonol	0.000	0.001	00	-	Ū
33-bri	273.15	368.15	49.0	1176.8	0.632	0.067	0.066	34	2	0
00 011	270.10	000.10	10.0	2 7 Dim	othyl 2 octanol	0.001	0.000	01	~	Ū
55-kus	298.15	353.15	19.6	196.1	0.448	0.054	-0.062	40	0	0
oo mus	200110	000110	1010	Cur	lonontanol	0.001	01002	10	Ū	0
82-wis/wue	273.30	324.90	10.0	230.0	0.581	0.060	-0.019	68	4	0
				Cu	lahavanal				-	-
90-rie/sch	313.20	313.20	10.0	30.0	0.120	0.013	-0.014	3	-1	0
				1 2-Ethanedi	ol (Ethylene Clyco	J)				
32-bri				1,2-Ethaneu	4.537	0.403	1.825	11	3	0^d
41-gib/loe	298.15	378.15	25.0	100.0	0.104	0.009	0.049	20	4	0
71-ham/smi					3.074	0.270	-3.074	1	-1	0
81-dic								0	0	0
82-kob/nis	298.15	298.15	49.0	196.1	0.479	0.041	0.456	4	4	0
83-nak/miy	298.15	298.15	101.3	101.3	0.049	0.004	-0.049	1	-1	0
90-miv/tak	298.15	298.15	50.0	200.0	0.109	0.009	0.032	4	2	0
90-won/hav	323.20	348.20	0.7	6.9	0.553	0.051	-0.148	12	0	0
j				191	Drononodial					
22 hbri	979 15	269 15	40.0	1,2-1 599 /		0.050	0.012	92	_5	od
71 hom/cmi	202 15	202.15	49.0	101.2	0.344	0.030	0.013	دی 1	-5	0-
/1-nam/smi	303.15	303.15	101.5	101.5	0.741	0.009	0.741	1	1	0
90-miy/tak ⁵					3.333	0.307	3.200	4	4	0
				1,3-I	Propanediol					,
32-bri	273.15	368.15	49.0	1176.8	0.828	0.071	0.063	32	2	0^d
83-nak/miy	298.15	298.15	101.3	101.3	0.210	0.019	0.210	1	1	0
90-miy/tak ^b	298.15	298.15	20.0	200.0	0.126	0.012	-0.011	8	0	0
				1.2.3-Propa	netriol (Glycerine)					
26-bri				_,,• • F	3.090	0.234	0.885	3	1	0
32-bri	273.15	368.15	49.0	686.5	1.651	0.126	-0.772	26	-12^{-12}	0^d
57-wal/ric								0	0	0
69-mcd/for	223.15	353.15	49.0	274.6	0.362	0.028	-0.145	98	-42	0
81-dic								Ő	0	0
83-nak/miv	298.15	298.15	101.3	101.3	0.191	0.015	0.191	1	1	0
90-miy/tak ^b	298.15	298.15	20.0	200.0	0.269	0.021	0.058	8	2	0
·				1 3-	Butanedial					
69-mcd/for	233.15	303.15	49.0	274.6	0.067	0.006	-0.001	56	-2	0
00 11104/101	200110	000110	1010	1 5 1	Domton o dial	0.000	01001		~	Ū
60 mcd/for	952 15	208 15	40.0	1,3-1	Pentanedioi	0.004	-0.001	45	_1	0
09-IIICu/I01	255.15	306.15	49.0	274.0	0.045	0.004	-0.001	45	-1	0
			2-M	ethyl-2,4-pent	anediol (Hexylene	Glycol)			-	
69-mcd/for	223.15	303.15	49.0	274.6	0.115	0.011	-0.005	63	-7	0
			3	B-Oxa-1-butan	ol (2-Methoxyetha	nol)				
87-led	298.15	343.15	10.0	300.0	0.041	0.004	0.001	52	0	0
			:	3-Oxa-1-hepta	nol (2-Butoxvetha	nol)				
93-mal/woo	288.15	348.15	2.6	380.7	0.289	0.031	0.080	138	28	0
			3.0	va 15 nontan	odial (Diathylana (^a lvcol)				
32-bri	273.15	368.15	49.0	1176.8	0.749	0.062	0.019	33	9	0^d
02 011	210110	000110					01010	00	Ū	Ū
77 okh/imo	200 15	110 15	3,6-Dioxa	l-octanol (Diet	nylene Glycol Mon	noethyl Ether)	0.019	69	0	
i i -akii/1111a	290.13	440.10	0.4	20.2	0.100	0.019	-0.012	02	- <i>L</i>	U
			3-	Methyl-1-hydi	roxybenzene (m-Cr	esol)				
68-bel/erg					5.028	0.487	4.244	11	11	0
88-sid/tej	298.20	338.20	0.7	34.5	0.228	0.022	-0.136	20	-12	0
95-cha/lee	298.15	348.15	1.0	30.0	0.076	0.007	0.025	45	7	0
95-ran/lew	353.15	503.15	10.0	400.0	0.258	0.026	-0.010	160	20	0
			4-Allv	l-2-methoxy-1	-hvdroxybenzene (Eugenol)				
32-bri	273.15	273.15	49.0	490.3	0.142	0.012	-0.016	7	-1	0

Table 4 (Continued)

^{*a*} o, (o), from the same source as the compressed liquid density data, available for a part of the temperature range only, respectively; e, from the smoothing equation (see Appendix I). ^{*b*} See text. ^{*c*} Smoothed reference densities ($P_{ref} = 0.1$ MPa, see Appendix I) were obtained by fitting the extrapolated values (extrapolation along each experimental isotherm using Tait equation). ^{*d*} Relative volumes V(T,P)/V(T = 273.15 K, P = 0.1 MPa) presented in 32-bri were recalculated to V(T,P)/V(T, P = 0.1 MPa), T > 273.15 K, using both $\rho(T = 273.15 \text{ K}, P = 0.1 \text{ MPa})$ given in the paper and V(T = 368.15 K, P = 0.1 MPa)/V(T = 273.15 K, P = 0.1 MPa) obtained by extrapolation of values for the isotherm T = 368.15 K using the Tait equation.

Table 5. Parameters c_{i} , b_{j} , and T_0 of Eq 1 Fitted to Data from 76-sah/gag,^a in the Temperature and Pressure Ranges T_{min} = 293.15 K, T_{max} = 298.15 K and P_{min} = 1 MPa, P_{max} = 7 MPa, and Absolute Root Mean Square Deviations, RMSD

					-	
	2-propanol	2-butanol	2-methyl-1-propanol	2-pentanol	3-pentanol	3-methyl-1-butanol
c_0 b_0 /MPa b_1 /MPa·K ⁻¹ T_0 /K RMSD/kg·m ⁻³	$\begin{array}{c} 0.075918\\ 67.2050\\ -40.1048\\ 298.15\\ 0.003 \end{array}$	$\begin{array}{c} 0.067186\\ 68.5712\\ -45.4687\\ 298.15\\ 0.004 \end{array}$	$\begin{array}{r} 0.065886\\ 52.4401\\ -48.2637\\ 323.15\\ 0.003 \end{array}$	$\begin{array}{c} 0.073077\\72.6208\\-39.1933\\313.20\\0.003\end{array}$	$\begin{array}{c} 0.060829 \\ 74.8267 \\ -58.8411 \\ 283.60 \\ 0.003 \end{array}$	0.070294 86.2540 -43.2323 273.15 0.003
U						

^a For 2-methyl-1-butanol, 2-methyl-2-butanol, 3-methyl-2-butanol, and 2-methyl-2-pentanol, see Table 3.

tanol, 3-methyl-2-butanol, and 2-methyl-2-pentanol [76sah/gag]. Results of the fits of data for other alkanols presented in [76-sah/gag] (2-propanol, 2-butanol, 2-methyl-1-propanol, 2-pentanol, 3-pentanol, and 3-methyl-1-butanol) are given separately in Table 5. The fits (Tables 3 and 5) are based on the F-type values of the specific volume calculated from smoothing equations presented by Sahli et al. [76-sah/gag], and therefore the deviations (RMSD, RMSD_r) are low and do not reflect the accuracy of the experimental data. Isothermal compressibilities, $\beta_T(T =$ 293.15 or 298.15 K, P = 0.1 MPa) calculated from the fits of data from 76-sah/gag by eq 1 for all those alkanols are, however, slightly lower than smoothed values reported by Sahli et al. [76-sah/gag]; deviations vary from -2.4% (2methyl-1-butanol) to -0.5% (2-butanol), and an average deviation is -1.4% for all alkanols. It should be noted that the parameters reported in Table 2 of the reference 76sah/gag for the polynomial function $\beta_T = f(P)$ (eq 1 in the reference) correspond probably to pressure in MPa, not in Pa as would follow from dimensions of the parameters in the table.

Isothermal compressibilities of 3-methyl-1-butanol calculated from the fit in Table 3 agree reasonably (deviations below 5%) with the literature data for temperatures below 308.15 K. At higher temperatures the agreement is likely to be worse. It should be pointed out that the isothermal compressibilities based on sound speeds from 87-isl/qua are higher (see also the discussion for 2-propanol above) than data from other sources (see rows for T = 303.15 K and T = 308.15 K in Table 6) by about 10%.

Johari and Dannhauser [68-joh/dan] presented compressed-liquid density data for several isomeric octanols (see Table 2) in the form of the equation $(\rho_T)_P = (\rho_0)_P A_P(T - 273.15)$ and reported the values of parameters $(\rho_0)_P$ and A_P for four pressures (0.1, 100, 200, 300, and 400 MPa) stating that their experimental values determined with the accuracy of 1 kg·m⁻³ are represented within $\pm 1\%$ by the equation. The fits of the F-type values generated from their equation show, naturally, much lower deviations (2octanol, 5-methyl-3-heptanol, see Tables 3 and 4) which should not be misinterpreted; the uncertainty of the values calculated from the fits cannot be lower than the value declared by the authors (1%). On the other hand, isothermal compressibilities calculated from the fit for 2-octanol are in surprisingly good agreement with the literature data in the close-to-ambient temperature range (1.5% in an average, see Table 6). The agreement of $\overline{P}-\rho-T$ data by 68-joh/dan with Bridgman's values for 3-octanol and 2-methyl-3-heptanol [33-bri] is still within the limit of 1% (Table 4); the data by 68-joh/dan were, however, rejected, preferring the directly measured values by Bridgman [33-bri]. The fits of F-type values by 68-joh/dan for those two alkanols resulted in the following data.

3-Octanol: $c_0 = 0.088$ 122; $b_0 = 76.2431$ MPa; $b_1 = -40.0065$ MPa·K⁻¹; $b_2 = 20.5866$ MPa·K⁻²; $T_0 = 368.15$ K; $T_{\min} = 250.90$ K; $T_{\max} = 361.10$ K; $P_{\max} = 400.00$ MPa; RMSD = 1.035 kg·m⁻³; RMSD_r = 0.114%; bias = 0.006 kg·m⁻³; $N_p = 26; \pm = 2$.

2-Methyl-3-heptanol: $c_0 = 0.090 \ 369$; $b_0 = 81.4339 \ MPa$; $b_1 = -40.3321 \ MPa \cdot K^{-1}$; $b_2 = 10.2694 \ MPa \cdot K^{-2}$; $T_0 = 368.15 \ K$; $T_{min} = 216.40 \ K$; $T_{max} = 363.50 \ K$; $P_{max} = 400.00 \ MPa$; RMSD = 1.470 kg·m⁻³; RMSD_r = 0.159%; bias = 0.063 kg·m⁻³; $N_p = 37$; $\pm = 9$.

Cycloalkanols. One data set per substance was available for cyclopentanol and cyclohexanol. The isothermal compressibility calculated from the fit for cyclopentanol agrees well with the literature value (deviation 3.2%, Table 6). The agreement for cyclohexanol is similar; however, the deviation from the value evaluated from calorimetric measurements by Petit and Ter Minassian [74-pet/ter] is rather large (-9.9%).

Diols and Triols. Values retained in the fit for 1,2ethanediol (five data sets) are in mutual agreement within 0.05% (on average, see Table 4). F-type data from 41-gib/ loe were generated using the parameters of both the Tait equation reported by the authors separately for each experimental temperature and the parameters of the thirdorder polynomial in temperature given in the same source for specific volume at atmospheric pressure. Isothermal compressibilities calculated from the fit agree well with literature values (deviations within $\pm 2\%$, Table 6).

The deviations in isothermal compressibility are much larger in the case of 1,2-propanediol (-14% in an average, Table 6) where the values from the sources 32-bri and 71ham/smi were retained in the final fit. The maximum pressure of the retained data set reported by Bridgman [32bril was decreased since large deviations were observed at high pressures. It should be noted that the data from 32bri and 71-ham/smi were rejected for 1,2-ethanediol, while the values by Miyamoto et al. [90-miy/tak] are in very good agreement with isothermal compressibilities taken from the literature for this substance. Therefore, an additional fit was performed for 1,2-propanediol, retaining only the data set [90-miy/tak] which resulted in $c_0 = 0.085$ 532, b_0 = 179.0139 MPa, $T_{\rm min} = T_{\rm max}$ = 298.15 K, $P_{\rm max}$ = 200.00 MPa, RMSD = 0.072 kg·m⁻³, RMSD_r = 0.007%, bias = 0.000 kg·m⁻³, $N_p = 4$, $\pm = 0$. The isothermal compressibility calculated from the fit, $\beta_T(T = 298.15 \text{ K}, P = 0.1$ MPa) = 0.478 GPa⁻¹, agrees excellently with the value reported by 86-kar/rod (Table 6), differing only by -0.8%.

The agreement in isothermal compressibilities for 1,3propanediol is good (below 2%, see Table 6) in the temperature range close to 298.15 K, where the fit is based on isothermal (T = 298.15 K) $P - \rho - T$ data reported in 83-nak/ miy and 90-miy/tak. Larger deviations (up to $\pm 6\%$) are observed at other temperatures where the fit is based on the directly measured data from 32-bri. The function B(T)(eq 3) is, contrary to the usual convex shape, concave, showing the maximum at T = 278 K, which indicates a mutual inconsistency of the retained data sets. Similarly as in the case of 1,2-propanediol, an additional fit of data from 90-miy/tak was performed: $c_0 = 0.092853$; $b_0 =$ 231.8143 MPa; $T_{\min} = T_{\max} = 298.15$ K; $P_{\max} = 200.00$ MPa; RMSD = 0.080 kg·m⁻³; RMSD_r = 0.007%; bias = 0.001 kg·m⁻³; $N_p = 8$; $\pm = 2$. The isothermal compressibility calculated from the fit, $\beta_T(T = 298.15 \text{ K}, P = 0.1 \text{ MPa}) =$

	$\beta_{\rm T}/{\rm GPa^{-1}}$	1		
<i>T</i> /K	eq 1 ^a	lit.	$\delta\beta T/\%^b$	ref
		1.Ur	adacanal	
308 15	0.84 ± 0.03	0 776	16 7	79-dia/tar ^c
318 15	0.04 ± 0.03	0.803	11.7	$70 \text{ dia/tar}^{\circ}$
316.13	0.89 ± 0.03	0.003	11.2	79-ula/tal ^o
333.15	0.97 ± 0.03	0.880	10.7	79-dia/tar
		1-Do	odecanol	
298.15	0.702 ± 0.004	0.709	-1.0	79-dia/tar ^c
308.15	0.741 ± 0.004	0.747	-0.8	79-dia/tar ^c
318.15	0.783 ± 0.005	0.794	-1.4	79-dia/tar ^c
333.15	0.853 ± 0.005	0.864	-1.3	79-dia/tar ^c
		2-P	ropanol	
298.15	1.123 ± 0.007	1.148	-2.2	93-ami/ara, ^d 76-hal/ell, ^e 96-zab/ruz ⁱ
		1.167	-3.8	86-mou/nai, ^d 76-hal/ell, ^e 96-zab/ruz
303.15	1.159 ± 0.008	1.197	-3.2	93-ami/ara. ^d 76-hal/ell. ^e 96-zab/ruz ⁱ
		1.190	-2.6	93-sri/nai. ^d 76-hal/ell. ^e 96-zab/ruz ^f
		1 313	-11 7	87-isl/qua ^d 76-hal/ell ^e 96-zab/ruz ^f
		1 186	-23	66-kat/shi ^c
208 15	1.107 ± 0.008	1.100	-5.0	02 ami/ara d 76 hal/all 06 ash/ruz/
308.15	1.197 ± 0.008	1.201	-5.0	93-ami/ara, 70-mai/en, 90-zab/ruz
		1.251	-4.3	82-Kar/red, 76-hal/ell, 96-zab/ruz
		1.364	-12.2	87-isl/qua, ^{<i>a</i>} 76-hal/ell, ^{<i>e</i>} 96-zab/ruz ^{<i>t</i>}
313.15	1.239 ± 0.009	1.427	-13.2	87-isl/qua, ^{d} 76-hal/ell, ^{e} 96-zab/ruz ^{f}
		1.332	-7.0	66-kat/shi ^c
318.15	1.28 ± 0.01	1.491	-14.1	87-isl/qua, ^d 76-hal/ell, ^e 96-zab/ruz ^f
323.15	1.33 ± 0.01	1.505	-11.6	66-kat/shi ^c
333.15	1.45 ± 0.02	1.729	-16.1	66-kat/shi ^c
343.15	1.58 ± 0.02	2.039	-22.5	66-kat/shi ^c
010110		210000 0 F		
909 15	0.020 \ 0.000	2-E	Sutanol	76 ash/ses(
293.15	0.928 ± 0.006	0.900	-3.9	76-san/gag ^e
298.15	0.957 ± 0.006	0.983	-2.6	76-san/gag ^e
		1.002	-4.5	88-0ka/oga," /6-hal/ell," 96-zab/ruz
		2-Methy	l-1-propanol	
293.15	0.977 ± 0.006	0.993	-1.6	76-sah/gag ^c
298.15	1.008 ± 0.006	1.034	-2.5	76-sah/gag ^c
		1 033	-2.5	88-0ka/0ga d 66-trc e 96-zab/ruz ^f
		1.000	-2.0	93 -ami/ara $\frac{d}{66}$ -trc $\frac{e}{96}$ -zah/ruz ^f
202 15	1.040 ± 0.006	1.020	-2.6	82 $von/dha d 66 trc \ell 96 rah/ruz f$
505.15	1.040 ± 0.000	1.000	2.0	$02 \operatorname{cri/rasi} d \operatorname{c} \operatorname{c} \operatorname{tras} d \operatorname{c} \operatorname{c} \operatorname{csh/rus} f$
		1.000	-2.0	93-811/11a1, 00-110, 90-2a0/112
000 17	1.075 + 0.007	1.000	-2.0	95-alll/alla, 00-tr(, 90-zab/ruz)
308.15	1.075 ± 0.007	1.107	-2.9	93-ami/ara, 60-trc, 90-zab/ruz
		1.107	-2.9	62-Kal/Teu, a 00-trt, a 90-zab/Tus
		2-P	entanol	
293.15	0.949 ± 0.005	0.919	3.3	76-sah/gag ^c
298.15	0.980 ± 0.005	0.947	3.5	76-sah/gag ^c
		3-P	entanol	
293 15	0.908 ± 0.006	0.891	1 9	76-sab/gag ^c
208 15	0.900 ± 0.000	0.001	1.3	76-sah/gage ^c
200.10	0.340 ± 0.000	0.360	1.5	10-san gage
		3-Methy	yl-1-butanol	
293.15	0.91 ± 0.01	0.917	-0.8	76-sah/gag ^c
298.15	0.92 ± 0.01	0.942	-2.3	76-sah/gag ^c
		0.939	-2.0	86-mou/nai, ^d 66-trc, ^e 96-zab/ruz ^f
303.15	0.93 ± 0.01	0.940	-1.1	82-ven/dha, ^d 66-trc. ^e 96-zab/ruz ^f
		0.946	-1.7	93-sri/nai. ^d 66-trc. ^e 96-zab/ruz ^f
		1 079	-13.2	87-isl/qua d 66-trc e 96-zab/ruz ^f
308 15	0.95 ± 0.02	0 079	-9 0	82-kar/red d 66-tre e 06-zab/ruz
000.10	0.00 ± 0.02	1 190	۵.5 15.9	$\frac{d}{d}$ \frac{d}
919 15	0.06 ± 0.02	1.120	-13.2	$o_1 - 151/qua, = 00 - 110, = 90 - 2ab/fu2'$
010.10 010.15	0.90 ± 0.02	1.1/0	-18.4	o_1 -151/qua, o_0 -true, o_0 -zab/ruz ^r
318.15	0.98 ± 0.02	1.228	-20.2	87-151/qua," 66-trc," 96-zab/ruz ^r
		2-Methy	yl-2-butanol	
293.15	1.011 ± 0.002	1.004	0.7	71-des/bha, ^d 66-trc, ^e 96-zab/ruz ^f
		9 (Octanol	
208 15	0.835 ± 0.014	ራ-ር በ ዩ1ቦ	Q 1	82-2000/pot d 68 tre 06 zoh/mart
~JO.1J	0.000 ± 0.014	0.010	0.1 1 1	σ_{a} aww/pet, σ_{a} oo-trt, σ_{b} ab/ruz
000 15	0.001 + 0.014	0.826	1.1	93-ann/ara, 98 -trc, 96 -zab/ruz ¹
303.15	0.861 ± 0.014	0.852	1.1	93-ami/ara," 68-trc," 96-zab/ruz ^r
308.15	0.889 ± 0.015	0.884	0.6	93-ami/ara, ^a 68-trc, ^e 96-zab/ruz ^t
		Cyclo	pentanol	
298.15	0.648 ± 0.008	0.628	3.2	74-kiy/gro, ^d 88-wis/wue. ^e 96-zab/ruz
		C - 1	ahavanal	
010.00	0.01 + 0.02	Cycle	Unexanoi	74
313.20	0.01 ± 0.03	0.677	-9.9	/4-pet/ter

0.638

0.644

-4.4

-5.3

Table 6. Comparison of Values of Isothermal Compressibility, $\beta_T = (1/\rho)(\partial \rho/\partial P)_T$, at P = 0.1 MPa Calculated from the Fits ____

> 74-pet/ter^{c,g} h, 80-raj/sub, e 96-zab/ruz^f h, 84-sip/wie,^e 96-zab/ruz^f

Table 6 (Continued)

	$eta_{ extsf{T}}/ extsf{GPa}^{-1}$			
<i>T</i> /K	eq 1 ^a	lit.	$\delta \beta_T / \%^b$	ref
		1,2-Et	hanediol	
298.15	0.368 ± 0.002	0.360	2.2	86-kar/rod ^c
		0.375	-1.9	91-dou/pal, ^d i, 96-zab/ruz ^f
303.15	0.375 ± 0.002	0.380	-1.3	63-art, di , 96-zab/ruz ^f
313.15	0.390 ± 0.002	0.387	0.8	86-kar/rod ^c
		0.398	-2.0	63-art, d i, 96-zab/ruz ^f
323.15	0.406 ± 0.002	0.411	-1.2	63-art, d i, 96-zab/ruz ^f
333.15	0.423 ± 0.002	0.423	0.0	86-kar/rod ^c
		0.427	-0.9	63-art, d i, 96-zab/ruz ^f
343.15	0.441 ± 0.002	0.449	-1.8	63-art, d i, 96-zab/ruz ^f
353.15	0.460 ± 0.002	0.467	-1.5	63-art, di , 96 -zab/ruz f
		1.2-Pr	opanediol	
283.15	0.404 ± 0.004	0.450	-10.2	86-kar/rod ^c
293.15	0.415 ± 0.004	0.469	-11.5	86-kar/rod ^c
298.15	0.421 ± 0.004	0.482	-12.7	86-kar/rod ^c
313.15	0.442 ± 0.005	0.519	-14.8	86-kar/rod ^c
333.15	0.477 ± 0.006	0.567	-21.2	86-kar/rod ^c
		1 3 Dr	nanodiol	
278.15	0.392 ± 0.004	0.377	4.0	86-kar/rod ^c
283 15	0.393 ± 0.003	0.382	2.9	86-kar/rod ^c
293 15	0.395 ± 0.000	0.393	0.5	86-kar/rod ^c
298 15	0.397 ± 0.001	0 404	-17	86-kar/rod ^c
313 15	0.407 ± 0.001	0 422	-3.6	86-kar/rod ^c
333.15	0.430 ± 0.005	0.456	-5.7	86-kar/rod ^c
		1 9 3-Pr	ronanetriol	
293 15	0.222 ± 0.001	0 242	-5 8	29-fre/hub ^d 69-mcd/for ^e 96-zab/ruz ^f
200.10	0.222 ± 0.001	0.242	-4.2	29-fre/hub d 93-cda e 96-zab/ruz ^f
303 15	0.234 ± 0.001	0.248	-5.6	20 fre/hub, d 60 mcd/for e 96-zab/ruz ^f
000.10	0.201 ± 0.001	0.244	-4.1	29-fre/hub d 93-cda e 96-zab/ruz ^f
313 15	0.241 ± 0.001	0 254	-5.1	29-fre/hub d 69-mcd/for e 96-zab/ruz ^f
323 15	0.247 ± 0.001	0.260	-5.0	20 fre/hub, 00 med/for e 96-zab/ruz ^f
333 15	0.247 ± 0.001 0.254 ± 0.001	0.200	-6.6	63-art d 69-mcd/for e 96-zab/ruz ^f
343 15	0.261 ± 0.001 0.262 ± 0.002	0.280	-6.4	63-art ^d 69 -mcd/for ^e 96 -zab/ruz ^f
353 15	0.202 ± 0.002 0.270 ± 0.002	0.288	-6.3	63-art ^d 69 -mcd/for ^e 96 -zab/ruz ^f
000.10		2 Ото	1 hutanal	
200.15	0.711 ± 0.001	0 717		00 downol d 87 lad ℓ 06 roh/mur
298.10	0.711 ± 0.001 0.722 + 0.001	0.717	-0.8	90-d0u/pai, $^{\circ}$ 87-led, $^{\circ}$ 96-zab/ruz ²
303.15	0.732 ± 0.001	0.731	0.1	95-K11/1alli, * 67-leu, * 90-zab/1uz*
		3-Oxa-1	l-heptanol	
298.15	0.770 ± 0.002	0.783	-1.7	90-dou/pal, ^{<i>a</i>} <i>j</i> , 96-zab/ruz ^{<i>t</i>}
		3-Methyl-1-h	ydroxybenzene	
323.15	0.597 ± 0.002	0.595	0.3	68-bel/erg, ^d k, 96-zab/ruz ^f
363.15	0.739 ± 0.002	0.740	-0.1	68-bel/erg, ^d k, 96-zab/ruz ^f

^{*a*} Uncertainty is estimated as $\pm 2s$, where *s* is a standard deviation derived from a covariance matrix of each fit. ^{*b*} [$\beta_T(\text{eq 1}) - \beta_T(\text{lit.})$]100/ $\beta_T(\text{lit.})$. ^{*c*} Isothermal compressibility, $\beta_T = -(1/V)(\partial V/\partial P)_T$. ^{*d*} Sound speed. ^{*e*} Density and thermal expansivity, $\alpha_P = (1/V)(\partial V/\partial T)_P$. ^{*f*} Isobaric heat capacity. ^{*g*} Interpolated value. ^{*h*} Sound speed at T = 313.20 K was obtained by polynomial interpolation using data from 80-raj/sub. ^{*i*} Densities and α_P from 41-gib/loe and 90-won/hay; see Appendix II. ^{*j*} Densities and α_P from smoothing equation presented in 93-mal/woo. ^{*k*} Densities and α_P from 68-bel/erg, 95-cha/lee, and 95-ran/lew; see Appendix II.

0.400 GPa⁻¹, agrees better (deviation -1.0%) with the literature value reported by 86-kar/rod (Table 6) than that calculated from the fit in Table 3.

Similarly as for 1,2-propanediol, the values reported by Bridgman 32-bri for 1,2,3-propanetriol at pressures higher than 800 MPa were rejected due to large deviations (above 3 kg·m⁻³). Isothermal compressibilities calculated from the fit in Table 3 are lower by about 6% than selected literature values (Table 6); the compressibility of 1,2,3-propanetriol is, however, low compared to other substances and thus small absolute deviations result in rather large relative ones. At temperatures around 298.15 K the fit is based on data taken from 83-nak/miy and [90-miy/tak]; the situation is similar to that for 1,2-propanediol and 1,3propanediol. Therefore, we present the results of the additional fit of data for 1,2,3-propanetriol from 90-miy/ tak: $c_0 = 0.098\ 021$; $b_0 = 413.7963\ MPa$; $T_{min} = T_{max} =$ 298.15 K; $P_{\text{max}} = 200.00$ MPa; RMSD = 0.196 kg·m⁻³; RMSD_r = 0.015%; bias = $-0.033 \text{ kg} \cdot \text{m}^{-3}$; $N_{\text{p}} = 8$; $\pm = 0$. The isothermal compressibility calculated from this fit, β_T

 $(T = 298.15 \text{ K}, P = 0.1 \text{ MPa}) = 0.237 \text{ GPa}^{-1}$, differs from that given by the fit in Table 3 ($\beta_T(T = 298.15 \text{ K}, P = 0.1 \text{ MPa}) = 0.231 \text{ GPa}^{-1}$) by 2.6% and is in better agreement (deviation -3.3%) with the value 0.245 GPa⁻¹ obtained by a polynomial interpolation using literature values for 293.15, 303.15, and 313.15 K from Table 6 ([29-fre/hub], [69-mcd/for], [96-zab/ruz]).

Only one value was found for 1,4-butanediol ([71-ham/ smi]; { $\rho(P = 101.3 \text{ MPa})/\rho(P = 0.1 \text{ MPa}) - 1$ } = 0.0332 at *T* = 303.15 K), and therefore no correlation was performed.

McDuffie et al. [69-mcd/for] presented the parameters of the Tait equation along with the parameters of the straight-line function representing densities at atmospheric pressure (see Appendix II) for four polyols: 1,2,3-propanetriol, 1,3-butanediol, 1,5-pentanediol, and 2-methyl-2,4pentanediol, stating that the uncertainty of the values calculated from their fits is about 1 part in 2000 (0.05%). The relative density values calculated from their fit for 1,2,3-propanetriol agree with other retained data within this limit (Table 4). The fits performed for the three diols

Table A-1. Parameters, a_i , of Functions A-1 and A-2 Used for the Fits in Table 3, Critical Densities, ρ_c , Critical Temperatures, T_c , Temperature Ranges of Validity, T_{\min} and T_{\max} , Absolute, RMSD, and Relative, RMSD_r, Root Mean Square Deviations, Biases, bias, Number of Data Points, N_p

	2-propanol	2-methyl-1-propanol	2-pentanol	3-pentanol	3-methyl-1-butanol
eq	A-1	A-1	A-1	A-2	A-2
a_0	0.624542	-1.230509	-1.270940	1015.0351	1202.4465
a_1	6.189375	13.569579	12.973096	-61.61612	-286.2512
a_2	-6.790392	-16.72639	-15.19684	3.546426	80.933918
a_3	2.490094	7.048178	6.270106	-1.734774	-9.862609
$\rho_{\rm c}/{\rm kg}\cdot{\rm m}^{-3}$	273.163	271.512	267.932		
$T_{\rm c}/{\rm K}$	508.30	547.78	560.40		
$T_{\rm min}/{ m K}$	243.15	253.15	234.00	233.60	273.15
$T_{\rm max}/{\rm K}$	430.00	423.15	433.00	433.10	403.15
RMSD/kg·m ⁻³	0.764	0.129	0.238	0.825	0.188
RMSD _r /%	0.093	0.019	0.030	0.107	0.026
bias/kg⋅m ⁻³	0.172	-0.002	0.000	0.001	-0.022
Nn	15	19	8	8	15
±	-3	1	Ō	2	1
$ref(\rho)$	76-hal/ell ^b	66-trc	95-wap/kar ^c	95-wap/kar ^c	66-trc
$ref(P_{ref})$	83-mcg		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	

^{*a*} Given with three decimal places since critical densities were calculated from rounded values of critical molar volumes recorded in the database [93-cda]. ^{*b*} At T < 298.15 K the data from 66-trc were used. ^{*c*} Equations A-1 and A-2 were fitted to values obtained by the extrapolation from elevated pressures to $P_{ref} = 0.1$ MPa along each experimental isotherm using the Tait equation.

are recorrelations of the F-type data, resulting in a lower $RMSD_r$ which should not be misinterpreted; the expected uncertainty of the relative density calculated from the fits should be the same as that declared by the authors.

Ether Alkanols. Only one data set per substance was found for each of four ether alkanols. The deviations between the values of isothermal compressibility calculated from the fits in Table 3 and the independent data found for two 2-alkoxyethanols are below 1% (3-oxa-1-butanol) and 2% (3-oxa-1-heptanol). No data to evaluate isothermal compressibilities for a comparison were found in the literature for other ether alkanols (3-oxa-1,5-pentanediol, 3,6-dioxa-1-octanol).

Aromatic Hydroxy Derivatives. Two $P-\rho-T$ data sets ([88-sid/tej], [95-cha/lee]) recently measured for 3-methyl-1-hydroxybenzene (m-cresol) are, in terms of relative density, in very good mutual agreement (within 0.03% in an average). After the values evaluated from calorimetric measurements [95-ran/lew] at higher temperatures have been retained, the Tait parameter C was allowed to vary with temperature to obtain a good fit. The agreement of isothermal compressibilities calculated from the final fit for two temperatures with available literature data is excellent (deviations below 0.3%). Two errors were found in original data for 3-methyl-1-hydroxybenzene: (i) the value reported in 88-sid/tej for T = 298.2 K and P = 13.79MPa was rejected due to an obvious typographical error in the original source; (ii) the misprinted temperature value in the fourth column of Table III in 95-ran/lew (435.15 K) was replaced by the correct value 453.15 K before correlations were performed. Compressed-liquid density values by Belinskii and Ergopulo [68-bel/erg] were rejected due to positive deviations higher than 1 kg \cdot m⁻³. On the other hand, their values at atmospheric pressure agree within 0.22 kg·m⁻³ with data from 95-cha/lee and 95-ran/lew, while the values at atmospheric pressure reported in 88sid/tej are significantly lower, particularly at lower temperatures (the deviations from the fit presented in Appendix II are -9.5 kg·m⁻³ at 298.2 K, -7.3 kg·m⁻³ at 318.2 K, and 0.3 kg·m⁻³ at 338.2 K).

Acknowledgment

A substantial part of this work was done during the stay of I.C. in the laboratory of Prof. I. Nagata and Prof. T. Yamada, Department of Chemical Engineering, Kanazawa University, Japan; computer and other facilities provided are acknowledged. Thanks are also expressed to Prof. K. N. Marsh and Dr. R. C. Wilhoit (TRC) for extracting some speed-of-sound data from the TRC Source Database.

Appendix I

Equations Used for $\rho(T, P_{ref}(T)) = \rho(T)$ in Fits by Eq 1 and References to Saturated Vapor Pressure Data. In those cases where the reference density values $\rho(T, P_{ref}(T))$ (see eq 1) were not available in original papers, the two following functions were used for the data sets, denoted by letter "e" or "(o)" in the last column of Table 4 to calculate reference density values

$$\rho(T/K)/kg \cdot m^{-3} = \rho_c \{1 + a_0(1 - T_r)^{1/3} + a_1(1 - T_r)^{2/3} + a_2(1 - T_r) + a_3(1 - T_r)^{4/3}\} \qquad T_r = T/T_c \quad (A-1)$$

$$\rho(T/K)/kg \cdot m^{-3} = a_0 + a_1(T/100) + a_2(T/100)^2 + a_2(T/100)^3 (A-2)$$

The values of adjustable parameters a_i obtained by fitting to available data using a weighted least squares method are recorded in Table A-1 along with some characteristics of the fits. Equation A-1 was preferably used in those cases where respective critical parameters (ρ_c , T_c) were available. The reference to the saturated vapor pressure data, $P_{ref}(T)$, used in eq 1 for 2-propanol is also given in Table A-1. The other three substances (1-undecanol, 1-dodecanol, 3-methyl-1-hydroxybenzene) for which the upper temperature limits (T_{max}) of the fits in Table 3 are above normal boiling temperatures are not listed in Table A-1, since original values of density at saturation were available in the original papers ([90-naz/sha], [95ran/lew]); the vapor pressures were calculated from the smoothing equations given by Ambrose and Walton [89amb/wal] and McGarry [83-mcg] for 1-alkanols and 3-methyl-1-hydroxybenzene, respectively.

The values of reference density, $\rho(T,P_{ref})$, $P_{ref} = 0.101\ 325$ MPa in most cases, reported for the same samples in original literature sources of compressed-liquid density data were exclusively employed for the fits in Table 3 for the substances which are not listed in Table A-1.

Appendix II

Parameters of Smoothing Functions for Original Reference Density Data. Table A-2 summarizes values

Table A-2.	Parameters	ai of Smooth	ing Functions	A-1 or A-2 Fit	ted to Origin	nal Referen	ce Density	Values ($\rho(T)$	(<i>P</i> _{ref})),
Critical De	nsities, ^a ρ _c , (Critical Tem	peratures, ^a T _c , '	Temperature	Ranges of V	alidity, T _{mir}	and T _{max} ,	and RMSD (of the Fits

eq	a_0	a_1	a_2	a_3	$ ho_{ m c}/{ m kg}{ m \cdot}{ m m}^{-3}$	$T_{\rm c}/{ m K}$	T_{\min}/K	$T_{\rm max}/{ m K}$	RMSD/kg·m ⁻³	ref
A-1	1.45788	1.39643			1-Undecanol 260.682	l 705.00	308.15	598.15	0.538	90-naz/sha
A-1 A-1	0.79074 1.07321	2.81286 2.18775	$-0.74347 \\ -0.39164$		1-Dodecanol 259.524 259.524	717.00 717.00	298.15 298.15	598.15 490.00	0.226 0.178	90-naz/sha 76-hal/ell ^b
A-2	978.893	-32.889	-5.471		1-Tetradecan	ol	313.15	348.15	0.050	89-mat/mak
A-1	0.88623	2.03793			1-Hexadecane 259.023	ol 770.00	328.15	348.15	0.052	89-mat/mak
A-1	2.71801	-4.21219	9.33752	-5.47651	2-Butanol 275.549	536.05	293.15	490.00	0.184	76-hal/ell ^c
A-1	2.20574	-1.15221	3.88729	2-N -2.30660	Methyl-2-prop 269.537	anol 506.21	300.65	465.00	0.041	83-hal/gun ^d
A-2	1053.59	-80.0		2-]	Methyl-1-buta	anol	293.15	298.15		76-sah/gag ^e
A-2	1079.95	-92.4		2-]	Methyl-2-buta	anol	293.15	298.15		76-sah/gag ^e
A-2	1067.18	-85.0		3-]	Methyl-2-buta	anol	293.15	298.15		76-sah/gag ^e
A-2	1029.24	-73.6		2-N	Methyl-2-pent	anol	293.15	298.15		76-sah/gag ^e
A-2	1115.159	-125.229	9.5158	2,2-1	Dimethyl-1-bı	ıtanol	264.80	290.00	0.139	91-ede/bar
A-2	1044.5	-76.6			2-Octanol		258.90	363.60		68-joh/dan ^f
A-2	1061.4	-82.0			3-Octanol		250.90	361.10		68-joh/dan ^f
A-2	1060.1	-80.4		2-N	Methyl-3-hept	anol	216.40	363.50		68-joh/dan ^f
A-2	1061.2	-83.0		5-N	Methyl-3-hept	anol	226.80	364.40		68-joh/dan ^f
A-2	1053.501	-74.945	-1.011	2,7-]	Dimethyl-2-oc	ctanol	293.15	358.15	0.036	55-kus
A-1	1.73617	0.83515			Cyclopentano 321.395	ol 619.50	273.30	324.90	0.276	82-wis/wue
A-2	933.710				Cyclohexano	1	313.20	313.20		90-rie/sch
A-1	1.77482	1.11208			1,2-Ethanedic 333.701	ol 790.00	298.15	378.15	0.236	g
A-2	1451.2	-65.5		1,	,2,3-Propanet	riol	223.15	353.15		69-mcd/for ^{f,h}
A-2	1198.5	-66.6			1,3-Butanedio	ol	223.15	313.15		69-mcd/for ^f
A-2	1167.1	-60.8		-	1,5-Pentanedi	ol	243.15	313.15		69-mcd/for ^f
A-2	1141.0	-74.9		2-Me	thyl-2,4-penta	anediol	223.15	313.15		69-mcd/for ^f
A-1	4.39906	-5.34855	3.95913	3	3-Oxa-1-butan 313.149	ol 577.00	298.15	343.15	0.018	87-led
A-2	1386.757	-191.933	34.177	3,6 -3.781	6-Dioxa-1-octa	anol	298.15	448.15	0.160	77-akh/ima
A-1	2.15404	-0.75174	1.15969	3-Meth	hyl-1-hydroxy 349.969	benzene 705.80	288.15	503.15	0.227	i

^{*a*} Taken from 93-cda. ^{*b*} Average deviations of values by 90-naz/sha, 89-mat/mak, and 93-gar/ban from the fit are 3.58 kg·m⁻³ (negative), 0.27 kg·m⁻³ (positive), and 0.28 kg·m⁻³ (positive), respectively. ^{*c*} Values from 87-kub/tan are lower below 323.15 K and higher at 348.15 K (average deviation 0.99 kg·m⁻³); average deviation of data by 76-sah/gag from the fit is 0.19 kg·m⁻³. ^{*d*} Deviations of values by 87-kub/tan from the fit are -0.10 kg·m^{-3} (323.15 K) and 1.24 kg·m⁻³ (348.15 K). ^{*e*} Interpolation between values at 293.15 and 298.15 K. ^{*T*} F-type data are presented as the linear function of temperature, $\rho = \rho_0 - A(T - 273.15)$, in the original source. ^{*g*} [41-gib/loe], [90-won/hay]. ^{*h*} All other $P - \rho - T$ data given as relative quantities. ^{*i*} [68-bel/erg], [95-cha/sta], [95-ran/lew]; deviations of values by 88-sid/tej from the fit are -9.5 kg·m^{-3} (298.2 K), -7.3 kg·m^{-3} (318.2 K), and 0.3 kg·m⁻³ (338.2 K).

of adjustable parameters a_i of functions A-1 and A-2 (see Appendix I) fitted mostly to the values of experimental densities at atmospheric pressure reported for the same

samples as compressed-liquid density data retained in correlations by the Tait equation (Tables 2 and 3). The functions were not, unlike the equations summarized in Table A-1, employed in smoothing the compressed-liquid density data and are presented as auxiliary information here, which may be useful particularly for less common substances. The functions enable us to calculate smoothed reference density values to be used in the evaluation of compressed-liquid densities from eq 1.

The fits in Table A-2 are not the fits of critically selected experimental data. Only in several cases are the parameters a_i obtained using either recommended density values taken from the TRC Thermodynamic Tables or data from other reliable sources presented.

Original reference density values for substances not listed in Tables A-1 and A-2 were not reported in the original sources; i.e., relative quantities such as relative density, $\rho(T,P)/\rho(T,P_{ref})$, volume ratio, $V(T,P)/V(T,P_{ref})$, or compression, { $\rho(T,P)/\rho(T,P_{ref}) - 1$ }, only were presented by researchers.

Literature Cited

26-bri	Bridgman, P. W. The Effect of Pressure on the Viscosity of Forty-three Pure Liquids. <i>Proc. Am. Acad. Arts Sci.</i> 1926 , <i>61</i> , 57–99.
29-fre/hub	Freyer, E. B.; Hubbard, J. C.; Andrews, D. H. Sonic Studies of the Physical Properties of Liquids. I. The Sonic Interferometer. The Velocity of Sound in Some Organic Liquids and Their Compressibilities. <i>J. Am. Chem. Soc.</i> 1929 , <i>51</i> , 759–770.
31-bri	Bridgman, P. W. The Volume of Eighteen Liquids as a Function of Pressure and Temperature. <i>Proc.</i> <i>Am. Acad. Arts Sci.</i> 1931 , <i>66</i> , 185–233.
32-bri	Bridgman, P. W. Volume-Temperature-Pressure Relations for Several Non-Volatile Liquids. <i>Proc.</i> <i>Am. Acad. Arts Sci.</i> 1932 , <i>67</i> , 1–27.
33-bri	Bridgman, P. W. The Pressure-Volume-Tempera- ture Relations of Fifteen Liquids. <i>Proc. Am. Acad.</i> <i>Arts Sci.</i> 1933 , <i>68</i> , 1–25.
41-gib/loe	Gibson, R. E.; Loeffler, O. H. Pressure-Volume- Temperature Relations in Solutions. V. The Energy- Volume Coefficients of Carbon Tetrachloride, Water and Ethylene Glycol. <i>J. Am. Chem. Soc.</i> 1941 , <i>63</i> , 898–906.
42-bri	Bridgman, P. W. Freezing Parameters and Com- pressions of Twenty-one Substances to 50,000 kg/ cm ² . <i>Proc. Am. Acad. Arts Sci.</i> 1942 , <i>74</i> , 399–424.
55-kus	Kuss, E. Hochdruckunterschungen III: Die Visko- sität von komprimierten Flüssigkeiten. (High-Pres- sure Investigation III: Viscosity of Compressed Liquids.) Z. Angew. Phys. 1955 , 7, 372–378.
56-stu	Stutchbury, J. E. Compressions of Organic Liquids and their Mixtures with Water. <i>Aust. J. Chem.</i> 1956 , <i>9</i> , 536–540.
57-wal/ric	Walsh, J. M.; Rice, H. M. Dynamic Compression of Liquids from Measurements on Strong Shock Waves. <i>J. Chem. Phys.</i> 1957 , <i>26</i> , 815–823.
63-art	Artemchenko, A. I. Compressibility and Structure of Non-Aqueous Solutions of Electrolytes. I. Velocity of Sound and Compressibility of Alcohols. <i>Zh. Fiz.</i> <i>Khim.</i> 1963 , <i>37</i> , 3–7 (in Russian).
63-gol/bag	Golubev, I. F.; Bagina, E. N. Specific Weight of n-Propyl, iso-Propyl, n-Butyl, and iso-Butyl Alcohols at High Pressures and Various Temperatures. <i>Tr.</i> <i>GIAP</i> 1963 , 39–54 (in Russian).
66-kat/shi	Katti, P. K.; Shill, S. K. Isothermal Compressibili- ties of Carbon Tetrachloride, Methanol, and Iso- propyl Alcohol. <i>J. Chem. Eng. Data</i> 1966 , <i>11</i> , 601– 604.
66-trc	TRC Table 23-2-1-(1.1020)-d. C-H-O. Alkanols, C_1 to C_5 . TRC Thermodynamic Tables – Nonhydro- carbons; Thermodynamics Research Center: College Station, TX, 1966; pp 5030–5031.
68-bel/erg	Belinskii, B. A.; Ergopulo, E. V. A Comprehensive Observation of m-Cresol in Dependence on P, ρ ,T. <i>Zh. Fiz. Khim.</i> 1968 , <i>42</i> , 1520–1523 (in Russian).
68-joh/dan	Johari, G. P.; Dannhauser, W. Dielectric Study of the Pressure Dependence of Intermolecular As- sociation in Isomeric Octyl Alcohols. <i>J. Chem. Phys.</i> 1968 , <i>48</i> , 5114–5122.

68-trc	TRC Table 23-2-1-(1.10239)-d, C-H-O. Alkanols (alcohols), C_8. TRC Thermodynamic Tables – Nonhydrocarbons; Thermodynamics Research Center: College Station, TX , 1968; pp 5110–5116.
69-mcd/for	McDuffie, G. E.; Forbes, J. W.; Madigorski, W. M.; Bretzel, J. J. Density and Compressibility of Four Higher Alcohols for Pressures to 2800 kg. per sq. cm. <i>J. Chem. Eng. Data</i> 1969 , <i>14</i> , 176–180.
71-des/bha	Deshpande, D. D.; Bhatgadde, L. G.; Oswal, S.; Prabhu, C. S. Sound Velocities and Related Proper- ties in Binary Solutions od Aniline. <i>J. Chem. Eng.</i> <i>Data</i> 1971 , <i>16</i> , 469–473.
71-ham/smi	Hamann, S. D.; Smith, F. The Effect of Pressure on the Volumes and Excess Volumes of Aqueous Solutions of Organic Liquids. <i>Aust. J. Chem.</i> 1971 , <i>24</i> , 2431–2438.
71-tse/sti	Tseng, J. K.; Stiel, L. I. The PVT Behavior of Isopropyl Alcohol at Elevated Temperatures and Pressures. <i>AIChE J.</i> 1971 , <i>17</i> , 1283–1286.
74-kiy/gro	Kiyohara, O.; Grolier, JP. E.; Benson, G. C. Excess Volumes, Ultrasonic Velocities, and Adiabatic Com- pressibilities for Binary Cycloalkanol Mixtures at 25 °C. <i>Can. J. Chem.</i> 1974 , <i>52</i> , 2287–2293.
74-pet/ter	Petit, J. C.; Ter Minassian, L. Measurements of $(\partial V/\partial T)_{P}$, $(\partial V/\partial p)_{T}$. and $(\partial H/\partial T)_{p}$ by Flux Calorimetry. <i>J. Chem. Thermodyn.</i> 1974 , <i>6</i> , 1139–1152.
76-hal/ell	Hales, J. L.; Ellender, J. H. Liquid Densities from 293 to 490 K of Nine Aliphatic Alcohols. <i>J. Chem.</i> <i>Thermodyn.</i> 1976 , <i>8</i> , 1177–1184.
76-sah/gag	Sahli, B. P.; Gager, H.; Richard, A. J. Ultracentrifu- gal Studies of the Isothermal Compressibilities of Organic Alcohols and Alkanes. Correlation with Surface Tension. <i>J. Chem. Thermodyn.</i> 1976 , <i>8</i> , 179–188.
77-akh/ima	Akhundov, T. S.; Imanov, Sh. Yu.; Tairov, A. D.; Sharipov, K. Observation of P-v-T Dependence for Diethylene Glycol Monoethyl Ether. <i>Izv. Vyssh.</i> <i>Uchebn. Zaved., Neft Gaz</i> 1977 , <i>20</i> (12), 50–52 (in Russian).
77-mor/inu	Moriyoshi, T.; Inubushi, H. Compressions of Some Alcohols and their Aqueous Binary Mixtures at 298.15 K and at Pressures up to 1400 atm. <i>J. Chem.</i> <i>Thermodyn.</i> 1977 , <i>9</i> , 587–592.
77-mor/mor	Moriyoshi, T.; Morishita, Y.; Inubushi, H. Compressions of Water + Alcohol Mixtures at 298.15 K and 1000 atm. <i>J. Chem. Thermodyn.</i> 1977 , <i>9</i> , 577–586.
78-amb/cou	Ambrose, D.; Counsell, J. F.; Lawrenson, I. J.; Lewis, G. B. Thermodynamic Properties of Organic Oxygen Compounds. XLVII. Pressure, Volume, Temperature Relations and Thermodynamic Prop- erties of Propan-2-ol. <i>J. Chem. Thermodyn.</i> 1978 , <i>10</i> , 1033–1043.
79-dia/tar	Diaz Pena, M.; Tardajos, G. Isothermal Compress- ibilities of n-1-Alcohols from Methanol to 1-Dodec- anol at 298.15, 308.15, 318.15, and 333.15 K. <i>J.</i> <i>Chem. Thermodyn.</i> 1979 , <i>11</i> , 441–445.
79-gol/vas	Golubev, I. F.; Vasil'kovskaya, T. N.; Zolin, V. S. Density of n-Propyl and iso-Propyl Alcohols at Various Temperatures and Pressures. <i>Tr. GIAP</i> 1979 , <i>54</i> , 5–15 (in Russian).
79-vas/gol	Vasil'kovskaya, T. N.; Golubev, I. F.; Zolin, V. S. Density of n-Butyl and iso-Butyl Alcohols at Various Temperatures and Pressures. <i>Tr. GIAP</i> 1979 , <i>54</i> , 15–22 (in Russian).
79-zol/gol	Zolin, V. S.; Golubev, I. F.; Vasil'kovskaya, T. A. Experimental Determination of Density of Alcohols at Low Temperatures. <i>Tr. GIAP</i> 1979 , <i>54</i> , 26–28 (in Russian).
80-gol/vas	Golubev, I. F.; Vasil'kovskaya, T. N.; Zolin, V. S. Experimental Observation of Density of Aliphatic Alcohols at Various Temperatures and Pressures. <i>InzhFiz. Zh.</i> 1980 , <i>38</i> (4), 668–670 (in Russian).
80-rae/fin	Raetzsch, M.; Findeisen, R. PVT-Messungen an Flüssigkeiten und Gasen mit einem Faltenbalg- piezometer (PVT-Measurements of Liquids and Gases with a Bellows Piezometer.) <i>Z. Phys. Chem.</i> (<i>Leipzig</i>) 1980 , <i>261</i> , 935–945.
80-raj/sub	Rajagopal, E.; Subrahmanyam, S. V. Excess Functions V ^E , $(\partial V^E / \partial P)_T$, and C_P^E of cyclohexane + cyclohexanol. <i>J. Chem. Thermodyn.</i> 1980 , <i>12</i> , 797–800.

81-dic	Dick, R. D. Shock Compression Data for Liquids. III. Substituted Methane Compounds, Ethylene Glycol, Glycerol, and Ammonia. <i>J. Chem. Phys.</i> 1981 , <i>74</i> , 4053–4061.	88-sid/tej 89-amb/wal
81-gol/vas	Golubev, I. F.; Vasil'kovskaya, T. N.; Zolin, V. S.; Shelkovenko, A. E. Density of Isoamyl Alcohol and Heptyl Alcohol at Various Temperatures and Pres- sures. <i>InzhFiz. Zh.</i> 1981 , <i>40</i> (2), 313–318 (in Russian).	89-mat/mak
82-aww/pet	Awwad, A. M.; Pethrick, R. A. Ultrasonic Investiga- tions of Mixtures of n-Octane with Isomeric Oc- tanols. <i>J. Chem. Soc., Faraday Trans.</i> 1 1982 , <i>78</i> , 3203–3212.	90-dou/pal
82-kar/red	Karunakar, J.; Reddy, K. D.; Rao, M. V. P. Isen- tropic Compressibilities of Mixtures of Aliphatic Alcohols with Benzonitrile. <i>J. Chem. Eng. Data</i> 1982 , <i>27</i> , 348–350.	90-miy/tak
82-kob/nis	Kobayashi, H.; Nishikido, N.; Kaneshina, S.; Tana- ka, M. An Apparatus for Easily Measuring the Compressibilities of Liquids and Solutions Using a Differential Transformer. <i>Nippon Kagaku Kaishi</i> 1982 , No. 11, 1835–1837 (in Japanese).	90-naz/sha
82-ven/dha	Venkateswarlu, P.; Dharmaraju, G.; Raman, G. K. Ultrasonic Studies in Binary Mixtures of Bro- mobenzene with Alcohols at 303.15 K. <i>Acoust. Lett.</i> 1982 , <i>6</i> , 1–5.	90-rie/sch
82-wis/wue	Wisotzki, K. D.; Wuerflinger, A. PVT Data for Liquid and Solid Cyclohexane, Cyclohexanone and Cyclopentanol up to 3000 bar. <i>J. Phys. Chem. Solids</i> 1982 , <i>43</i> , 13–20.	90-won/hay
83-hal/gun	Hales, J. L.; Gundry, H. A.; Ellender, J. H. Liquid Densities from 288 to 490 K of Four Organic Oxygen Compounds. <i>J. Chem. Thermodyn.</i> 1983 , <i>15</i> , 211– 215.	91-dou/pal
83-mcg	McGarry, J. Correlation and Prediction of the Vapor Pressures of Pure Liquids over Large Pressure Ranges. <i>Ind. Eng. Chem., Process Des. Dev.</i> 1983 , <i>22</i> , 313–332.	
83-nak/miy	Nakagawa, M.; Miyamoto, Y.; Moriyoshi, T. Com- pression of Aqueous Binary Mixtures Containing Alcohols and Cyclic Ethers at 298.15 K and 101.3 MPa. <i>J. Chem. Thermodyn.</i> 1983 , <i>15</i> , 15–21.	91-ede/bar
84-sip/wie	Sipowska, J. T.; Wieczorek, S. A. Vapour Pressures and Excess Gibbs Free Energies of (Cyclohexanol + n-heptane) between 303.147 and 373.278 K. <i>J.</i> <i>Chem. Thermodyn.</i> 1984 , <i>16</i> , 693–699.	92-uos/kit
85-tek/cib	Tekáč, V.; Cibulka, I.; Holub, R. PVT Properties of Liquids and Liquid Mixtures: A Review of the Experimental Methods and the Literature Data. <i>Fluid Phase Equilib.</i> 1985 , <i>19</i> , 33–149.	93-ami/ara
86-kar/rod	Kartsev, V. N.; Rodnikova, M. N.; Tsepulin, V. V.; Dudnikova, K. T.; Markova, V. G. Observation of Intermolecular Interactions and Structure of Liquid Diamines, Diols, and Aminoalcohols by the Isother- mal Compressibility Method. <i>Zh. Strukt. Khim.</i> 1986 , <i>27</i> , 187–189 (in Russian).	93-cda
86-mou/nai	Mouli, J. C.; Naidu, P. R.; Choudary, N. V. Excess Volumes, Ultrasonic Velocities, and Isentropic Com- pressibilities of 1-Chlorobutane with Isopropyl, Isobutyl, and Isopentyl Alcohols. <i>J. Chem. Eng.</i> <i>Data</i> 1986 , <i>31</i> , 493–496.	93-gar/ban
87-isl/qua	Islam, M. P.: Quadri, S. K. Ultrasonic Velocity and Viscosity of Binary Liquid Mixtures. <i>Thermochim. Acta</i> 1987 , <i>115</i> , 335–344.	93-mal/woo
87-kub/tan	Kubota, H.; Tanaka, Y.; Makita, T. Volumetric Behaviour of Pure Alcohols and Their Water Mix- tures Under High Pressure. <i>Int. J. Thermophys.</i> 1987 , <i>8</i> , 47–70.	93-sri/nai
87-led	Lederer, T. Molvolumina von reinen flüssigen Stof- fen und der binaren Mischung Butan-1-ol/n-Hexan bei hohem Druck und verschiedenen Temperaturen. (Molar Volumes of Pure Liquid Substances and Binary Mixture Butan-1-ol/n-Hexane at High Pres- sures and Various Temperatures.) Thesis, Heidel- berg Lingerstity. Cormony. 1097: pp. 1-04	94-cib/zik 95-cha/lee
88-oka/oga	Okano, T.; Ogawa, H.; Murakami, S. Molar Excess Volumes, Isentropic Compressions, and Isobaric Heat Capacities of Methanol - Isomeric Butanol Systems at 298.15 K. <i>Can. J. Chem.</i> 1988 , <i>66</i> , 713– 717.	95-kri/ram

	of Mixtures of Coal Chemicals. <i>Chem. Eng. Com-</i> <i>mun.</i> 1988 , <i>72</i> , 159–169.
89-amb/wal	Ambrose, D.; Walton, J. Vapor Pressures up to Their Critical Temperature of Normal Alkanes and 1-Alkanols. <i>Pure Appl. Chem.</i> 1989 , <i>61</i> , 1395–1403.
89-mat/mak	Matsuo, S.; Makita, T. Volumetric Properties of 1-Alkanols at Temperatures in the Range 298–348 K and Pressures up to 40 MPa. <i>Int. J. Thermophys.</i> 1989 , <i>10</i> , 885–897.
90-dou/pal	Douheret, G.; Pal, A.; Davis, M. I. Ultrasonic Speeds and Isentropic Functions of (a 2-Alkoxyethanol + Water) at 298.15 K. <i>J. Chem. Thermodyn.</i> 1990 , <i>22</i> , 99–108.
90-miy/tak	Miyamoto, Y.; Takemoto, M.; Hosokawa, M.; Uosaki, Y.; Moriyoshi, T. Compressions of (Water $+$ a C3 Alkanol) and (Water $+$ an Alkan-1,2-diol) at the Temperature 298.15 K and Pressures up to 200 MPa. <i>J. Chem. Thermodyn.</i> 1990 , <i>22</i> , 1007–1014.
90-naz/sha	Naziev, Ya. M.; Shakhverdiev, A. N.; Akhundov, T. S.; Tairov, A. D.; Abdullaev, T. Sh. Thermal Proper- ties of Undecyl and Dodecyl Alcohols. <i>Izv. Vyssh.</i> <i>Uchebn. Zaved., Neft Gaz</i> 1990 , <i>33</i> (12), 69–72 (in Russian).
90-rie/sch	Riembauer, M.; Schulte, L.; Wuerflinger, A. PVT Data of Liquid and Solid Phases of Methanol, Cyclohexanol, and 2,3-Dimethylbutane up to 300 MPa. Z. Phys. Chem. (Munich) 1990 , 166, 53-61.
90-won/hay	Wong, CF.; Hayduk, W. Molecular Diffusivities for Propene in 1-Butanol, Chlorobenzene, Ethylene Glycol, and n-Octane at Elevated Pressures. <i>J.</i> <i>Chem. Eng. Data</i> 1990 , <i>35</i> , 323–328.
91-dou/pal	Douheret, G.; Pal, A.; Hoeiland, H.; Anowi, O.; Davis, M. I. Thermodynamic Properties of (Ethan- 1,2-diol + Water) at Temperature 298.15 K. I. Molar Volumes, Isobaric Heat Capacities, Ultrasonic Speeds, and Isentropic Functions. <i>J. Chem. Ther- modyn.</i> 1991 , <i>23</i> , 569–580.
91-ede/bar	Edelmann, R.; Bardelmeier, U.; Wuerflinger, A. Pressure-Volume-Temperature Data and Dielectric Properties of Liquid and Solid 2,2-Dimethylbutan- 1-ol up to 300 MPa. <i>J. Chem. Soc., Faraday Trans.</i> <i>1</i> 1991 , <i>87</i> , 1149–1154.
92-uos/kit	Uosaki, Y.; Kitaura, S.; Moriyoshi, T. Compressions of 4-Methyl-1,3-dioxolan-2-one and Some Alkanols at Presures up to 200 MPa and at the Temperature 298.15 K. <i>J. Chem. Thermodyn.</i> 1992 , <i>24</i> , 559–560.
93-ami/ara	Aminabhavi, T. M.; Aralaguppi, M. I.; Harogoppad, A. S.; Balundgi, R. H. Densities, Viscosities, Refractive Indices, and Speed of Sound for Methyl Acetoacetate + Aliphatic Alcohols (C_1 - C_8). J. Chem. Eng. Data 1993 , <i>38</i> , 31–39.
93-cda	CDATA, Database of Physical and Transport Prop- erties of Pure Fluids. Department of Physical Chemistry, Institute of Chemical Technology and FIZ CHEMIE GmbH: Prague and Berlin, 1993.
93-gar/ban	Garg, S. K.; Banipal, T. S.; Ahluwalia, J. C. Densi- ties, Molar Volumes, Cubic Expansion Coefficients, and Isothermal Compressibilities of 1-Alkanols from 323.15 to 373.15 K and at Pressures up to 10 MPa. <i>J. Chem. Eng. Data</i> 1993 , 38, 227–230.
93-mal/woo	Malhotra, R.; Woolf, L. A. Thermodynamic Proper- ties of 2-Butoxyethanol at Temperatures from 288 K to 348 K and Pressures from 0.1 MPa to 380 MPa. <i>J. Chem. Thermodyn.</i> 1993 , <i>25</i> , 1189–1196.
93-sri/nai	Srinivasulu, B.; Naidu, P. R. Excess Volumes and Speeds of Sound for m-Chlorotoluene + 2-Propanol, +2-Methyl-1-propanol, and +3-Methyl-1-butanol at 303.15 K. <i>J. Chem. Eng. Data</i> 1993 , <i>38</i> , 622–624.
94-cib/zik	Cibulka. I.; Ziková, M. Liquid Densities at Elevated Pressure of 1-Alkanols from C ₁ to C ₁₀ : A Critical Evaluation of Experimental Data. <i>J. Chem. Eng.</i> <i>Data</i> 1994 , <i>39</i> , 876–886.
95-cha/lee	Chang, J. S.; Lee, M. J. Densities of m-Cresol + m-Xylene and m-Cresol + Tetralin Mixtures at 298–348 K and up to 30 MPa. <i>J. Chem. Eng. Data</i> 1995 , <i>40</i> , 1115–1118.
95-kri/ram	Krishnan, K. M.; Rambabu, K.; Venkateswarlu, P.;

Siddiqi, S. A.; Teja, A. S. High Pressure Densities

95-kri/ram Krishnan, K. M.; Rambabu, K.; Venkateswarlu, P.; Raman, G. K. A Study on Mixing Properties of Binary Mixtures of 2-Methoxyethanol with Aromatic Hydrocarbons. J. Chem. Eng. Data **1995**, 40, 132–135.

- 95-ran/lew Randzio, S. L.; Lewis, E. A.; Eatough, D. J.; Hansen, L. D. Thermophysical Properties of m-Cresol as a Function of Temperature (303 to 503K) and Pressure (0.1 to 400 MPa). Int. J. Thermophys. 1995, 16, 883–900.
- 95-wap/kar Wappmann, S.; Karger, N.; Luedemann, H.-D. pVT Data of Liquid 1-, 2-, and 3-Pentanol from 10 to 200 MPa and from 233 to 433 K. *J. Chem. Eng. Data* **1995**, *40*, 233–236.
- 96-zab/ruz Zábranský, M.; Růžička, V.; Majer, V.; Domalski, E. S. Heat Capacities of Liquids. Review and Recommended Values. J. Phys. Chem. Ref. Data 1996, Monograph No. 6.
- 97-cib/hne Cibulka, I.; Hnědkovský, L.; Takagi, T. $P-\rho-T$ Data of Liquids: Summarization and Evaluation. 3. Ethers, Ketones, Aldehydes, Carboxylic Acids, and Esters. J. Chem. Eng. Data **1997**, 42, 2–26.

Received for review December 2, 1996. Accepted February 10, 1996.^{\otimes} The provision of the one-year assistant professor position at the Kanazawa University by the Japanese Ministry of Education (Monbusho) and support from the Grant Agency of the Czech Republic within the Grant No. 203/94/0312 are acknowledged.

JE960389Z

[®] Abstract published in *Advance ACS Abstracts*, April 1, 1997.